
Appendices

Appendices occur in the order as they are referred to in the main text.
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A Data

A.1 Automation costs over time

Figure A.1 shows how the distribution of automation costs per worker (top panel) and

automation cost shares (bottom panel) have changed over time. Mean automation costs

per worker and the mean automation cost share are rising over 2000–2016. Furthermore,

besides increases in means, there is a fanning out of the distributions with automation

costs rising faster for higher percentiles.
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Figure A.1. Automation costs over time
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A.2 Correlations between automation costs and specific tech-

nologies

Table A.1 reports correlations between firms’ (standardized) automation cost shares and

their self-reported implementation with self- or externally developed process, product,

and organizational innovations (all three measured as dummies). The model controls for

sector fixed e�ects and firm size.

Table A.2 estimates the same model– again controlling for sector fixed e�ects and

firm size– for a host of self-reported uses of specific technologies, all of which are given

as dummy variables in the data. Note that since these variables originate from di�erent

survey years, they have varying overlap with the firms where we observe automation

costs; and cannot be entered jointly in a single regression.

Table A.1. Firm-level correlations between automation cost shares
and type of innovation

Dependent variable: Standardized automation cost share
Process innovations 0.205***

(0.048)
Product innovations 0.098**

(0.036)
Organizational innovations 0.100*

(0.041)
N 7,163

Notes: Automation cost shares as a percentage of total costs,
excluding automation costs. Model controls for one-digit in-
dustry fixed e�ects and the log number of workers at the firm,
and is weighted by survey weights.
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Table A.2. Firm-level correlations between automation cost shares and technology usage

Dependent variable: Standardized automation cost share
Use of electronic data suited to automated processing 0.246*** Received orders for goods or services through EDI 0.104**

(0.054) (0.034)
N 4,315 Ordered through Electronic Data Interchange (EDI) -0.097**

(0.032)
CRM, inventory and distribution analysis 0.202*** N 14,180

(0.041)
Customer Relationship Management (CRM), customer analysis 0.052 Sales software 0.089**

(0.048) (0.030)
N 11,934 Purchasing software 0.002

(0.030)
Enterprise Resource Planning (ERP) software 0.162*** N 7,834

(0.027)
N 12,542 Radio Frequency Identification (RFID) 0.051

(0.083)
Automated records used for value chain integration 0.201** N 4,149

(0.066)
Value chain integration -0.012 Local Area Network (LAN) 0.015

(0.047) (0.027)
N 7,883 7,656

Big data analysis 0.126* Internet for financial transactions 0.015
(0.053) (0.025)

N 4,684 N 7,530

Cloud-services: Software for customer information mngmnt 0.170* Internet for training and education (incl. e-learning) 0.036
(0.085) (0.031)

Cloud-services: Software for accounting and financial mngmnt 0.141* N 8,388
(0.063)

N 6,715

Notes: Automation cost shares as a percentage of total costs, excluding automation costs. Model controls for one-digit industry fixed e�ects and the
log number of workers at the firm, and is weighted by survey weights.
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A.3 Technology usage by sector

Table A.3 shows that the overall use of data for automated processing is relatively com-

mon in all sectors, reflecting this is a general characteristic of automation. CRM software

for inventory management is used in Professional activities and Information & commu-

nication services as well as in Manufacturing. Further, over 60 percent of manufacturing

firms use ERP, more than 20 percentage points more than in Wholesale & retail, the sector

which has the second-highest rate of use. Automation-compatible value chain integration

is also most prevalent in Manufacturing, Wholesale & retail, and Transportation & stor-

age. By contrast, the use of cloud software for accounting and CRM is most widespread

in service sectors: Professional activities, Information & communication, and Administra-

tive activities. Applications of big data analysis vary: in Information & communication

and Manufacturing, the use of internal firm data is most common, in Transportation

this is (unsurprisingly) location data, and the use of social data is most common in

Professional activities as well as Accommodation & food serving.
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Table A.3. Technology usage by sector

Data for
automated
processing

CRM for
inventory

& distribu-
tion

ERP
software

Automation-
compatible
value chain
integration

Cloud
software
for CRM

Cloud
software

for
accounting

Big data:
Internal

firm

Big data:
Location

Big data:
Social

Big data:
Other

Manufacturing 0.36 0.47 0.63 0.15 0.09 0.11 0.14 0.05 0.05 0.03
Construction 0.23 0.24 0.24 0.05 0.09 0.12 0.10 0.14 0.07 0.01
Wholesale & retail trade 0.43 0.42 0.41 0.17 0.12 0.14 0.12 0.07 0.13 0.05
Transportation & storage 0.39 0.29 0.27 0.18 0.10 0.14 0.16 0.20 0.07 0.05
Accommodation & food serving 0.27 0.18 0.10 0.05 0.14 0.23 0.06 0.05 0.18 0.01
Information & communication 0.43 0.64 0.35 0.10 0.35 0.35 0.15 0.13 0.21 0.07
Prof’l, scientific, & technical activities 0.40 0.52 0.28 0.08 0.20 0.29 0.08 0.06 0.12 0.06
Administrative & support activities 0.34 0.39 0.23 0.08 0.19 0.25 0.07 0.05 0.11 0.04
N 4,315 11,938 12,542 11,028 6,715 6,715 4,684 4,684 4,684 4,684

Notes: Observation numbers di�er across columns because technology usage variables are obtained from di�erent survey waves; and because we have discarded missing and
imputed values.
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A.4 Automation imports

We obtain data on firms’ imports, exports, and re-exports of intermediates from Statistics

Netherlands: unlike our automation cost measure, which starts in 2000, we can only iden-

tify these trade variables from 2010 onward. Following the literature, we define automa-

tion machinery using CN-2018 product codes. In particular, we follow the categorization

of Acemoglu and Restrepo (2021) and include automatically controlled machines, auto-

matic transfer machines, automatic welding machines, numerically controlled machines,

and robots as automated machinery. Examples of descriptions of automatically controlled

machines are “Automatic regulating or controlling instruments and apparatus”; exam-

ples of automatic transfer machines are “Continuous-action elevators and conveyors, for

goods or materials”; examples of automatic welding machines are “Machines and appara-

tus for arc (including plasma arc) welding of metals”; examples of numerically controlled

machines are “Numerically controlled bending, folding, straightening or flattening ma-

chines (including presses)”; and robots are described as “Industrial robots, not elsewhere

specified or included”.

Detailed product codes for each of these are as follows:

• Automatically controlled machines:

90321080, 90321000, 90328100, 90320000, 90321020, 90328900, 90328100, 90329000,

90322000

• Automatic transfer machines:

84283100, 84283900, 84573090, 84283300, 84283200, 84283990, 84580000, 84283100,

84283920, 84573000, 84573010

• Automatic welding machines:

85153100, 85153100, 85152100, 85152100

• Numerically controlled machines:

845811000080, 845811200080, 845811410010, 845811410080, 845811490080,

845811800080, 845891000010, 845891000080, 845891200080, 845891800080,

845921000010, 845921000080, 845931000010, 845931000080, 845941000010,
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845941000080, 845951000010, 845951000080, 845961000010, 845961000080,

845961100080, 845961900080, 846012000010, 846012000080, 846022000010,

846022000080, 846023000080, 846024000080, 846031000010, 846031000080,

846040100080, 846221000010, 846221000080, 846221100080, 846221800080,

846231000010, 846231000080, 846241000010, 846241000080, 846241100080,

846241900080

• Robots: 84795000

Figure A.2 shows real total imports, exports, and re-exports for automation technol-

ogy over 2010–2016. Re-exports are defined as goods transported via the Netherlands

which are (temporarily) owned by a resident of the Netherlands without any significant

industrial processing (including, for example, goods that are cleared by Dutch distri-

bution centers and exported to other (European) countries). This shows that exports

of automation technologies exceed imports in the Netherlands, and that there is also a

substantial amount of re-exports.

Table A.4 compares automation costs and automation imports as a percentage of

total operating cost for the overlapping subsample of firms at the sector level53, revealing

that average automation expenditures are substantially higher than average automation

imports – since few firms are importers–, and observed across a wider range of sectors.

Automation imports and automation expenditures are somewhat correlated at the firm-

level, as shown in the first two columns of Table A.5 where firm-by-year automation

expenditures are regressed onto (net) automation imports while controlling for firms’

total operating cost, and additionally year fixed e�ects in the second column. However,

this correlation disappears when adding firm fixed e�ects (seen from the last two columns

of Table A.5): that is, firms are not more likely to have higher automation costs when

they (net) import more automation technology.

53We construct firm-level averages and remove firms which cease operations before 2009

when comparing our automation cost data to automation imports.
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Figure A.2. Total automation imports, exports, and re-exports over time
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Table A.4. Comparing automation costs to automation imports by sector

Mean percentage in total costs, for automation:

Sector Costs Imports Net imports
Manufacturing 0.347 0.080 0.042
Construction 0.196 0.001 0.001
Wholesale & retail trade 0.300 0.058 0.051
Transportation & storage 0.352 0.134 0.095
Accommodation & food serving 0.268 0.000 0.000
Information & communication 0.810 0.004 0.004
Prof’l, scientific, & technical activities 1.000 0.007 0.005
Administrative & support activities 0.434 0.003 0.003

Notes: Total N firms is 30,291. Net automation imports are defined as imports minus
re-exports. Total costs include automation costs.
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Table A.5. Comparing automation costs to automation imports
between and within firms

Dependent variable: Automation costs (IHS)
(1) (2) (3) (4)

Automation imports (IHS) 0.018** 0.018** -0.001 -0.002
(0.007) (0.007) (0.004) (0.004)

(5) (6) (7) (8)

Net automation imports (IHS) 0.016* 0.016* -0.003 -0.003
(0.006) (0.006) (0.004) (0.004)

Year fixed e�ects No Yes No Yes
Firm fixed e�ects No No Yes Yes
Log total costs Yes Yes Yes Yes

Notes: 110,805 firm-year observations for each model. Automation costs, imports, and
net imports are transformed using the inverse hyperbolic sine (IHS). Net automation
imports are defined as imports minus re-exports. All models control for log total costs at
the firm-year level. Standard errors are clustered at the firm-level. *p<0.10, **p<0.05,
***p<0.01.
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B Theoretical model of firm-level automation spikes

As in Bonfiglioli et al. (2021), our model adds monopolistic competition and firm hetero-

geneity to task models of endogenous automation developed by Acemoglu and Restrepo

(2018, 2019). As in Bonfiglioli et al. (2021), we abstract from new task creation as this is

not our object of study. However, the assumptions in our model also di�er from Bonfigli-

oli et al. (2021) in two ways. First, our model assumes fixed instead of convex adjustment

costs of automation. Second, our model formulates the firm’s decision to automate as

a dynamic instead of a static profit maximization problem. In particular, it assumes

that the fixed costs of automation are irreversible (i.e. cannot be recouped other than

through higher profits in the future) and that the lowest possible output price using the

most recent automation technologies falls over time.

Together, this implies that a firm will automate when the expected gain from moving

to the lowest possible output price outweighs its costs of adjustment (abstracting from

the importance of product demand shocks). However, because adjustment costs are fixed

and irreversible, a firm will not automate in every period. Instead, immediately after the

firm decides to automate it will wait a number of periods until the increase in expected

profit again outweighs its fixed adjustment costs. Therefore, our model predicts spikes in

automation cost shares over time. This prediction of spikes in automation costs shares

is key to our empirical identification strategy. It is also consistent with the literature on

lumpy investment in capital, as in Haltiwanger et al. (1999); Doms and Dunne (1998), or

in robots, as in Humlum (2021). However, these papers do not capture the task-based

approach to endogenous automation.
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B.1 Exogenous automation

B.1.1 Consumption

Assume consumers derive utility from consuming goods Y1,...,YJ , according to the follow-

ing CES utility function:

U(Y1, ..., YJ) =
S

U
Jÿ

j=1
[‘jYj]

‡≠1
‡

T

V

‡
‡≠1

(B.1)

such that
Jÿ

j=1
PjYj = PY

where ‡ > 1.54 ‘j captures specific preferences across goods, Y is utility or real income

spent on Y1,...,YJ , and P is the ideal price index55 The price index P is given by:

P (P1, ..., PJ) ©
S

U
Jÿ

j=1
[Pj/‘j]1≠‡

T

V

1
1≠‡

= 1 (B.2)

where the last equality follows from choosing consumption as the numeraire such that all

prices are relative to P .

From equations (B.1) and (B.2) we obtain that product demand for firm j is given

by:

Yj = Y ‘‡≠1
j P ≠‡

j (B.3)

where Y captures demand shocks that are common across all firms j = 1, ..., J , and ‘j

captures shocks in the relative demand for Yj relative to Yj̃ with j̃ ”= j and j̃ = 1, ..., J .56

54Humlum (2021) assumes that ‡ = 4.
55Note that qJ

j=1 PjYj = E(P (1), ..., P (J), U) = e(P (1), ..., P (J))U = PY with

E(P (1), ..., P (J), U) the expenditure function, P © e(P (1), ..., P (J)) the expenditure

function per unit of utility, and Y © U utility or real income spent on Y1,...,YJ .
56If ‘j would be the same for all j, it would disappear from equations (B.2) and (B.3).

Also, if ‘j’s are di�erent across j but would all increase by the same proportion, equa-

tion (B.3) simplifies to Yj = Y ‘≠1
j P ≠‡

j capturing that utility but not real income has
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B.1.2 Production

For each firm j = 1, ..., J , the production of Yj is given by the following Cobb-Douglas

production function:

Yj = exp
3⁄ 1

0
ln(yj(z))dz

4
(B.4)

with yj(z) a quantity of task z used in the production of Yj.57

Each task is produced using a quantity of capital, kj(z), or labor, ¸j(z), according to:

yj(z) =

Y
___]

___[

¸j(z) + “j(z)kj(z) if z œ [0, I]

¸j(z) if z œ (I, 1]
(B.5)

with “j(z) a firm-specific task productivity schedule of capital. Assume that “j(z) is

decreasing in z. That is, tasks are ordered on the unit-interval such that capital has a

comparative advantage in the production of lower-indexed tasks.

Task I œ (0, 1) is a task threshold such that all tasks z Æ I can be produced by labor

or capital (and will be produced by capital in equilibrium), and all tasks z > I can only

be produced by labor. Also assume that for all relevant levels of I:

W >
R

“j(I) (B.6)

with W is the price of one unit of ¸j(z) and R is the price of one unit of kj(z). That is, as

new automation technologies make it feasible for labor tasks just above I to be performed

by capital, cost minimizing firms have an incentive to adopt these new automation tech-

increased by the same proportion.
57Equation (B.4) implicitly assumes that the elasticity of substitution between tasks is

unity. Although direct estimates do not exist, Goos et al. (2014) report an elasticity

of substitution between 21 occupations of 0.85, and Humlum (2021) finds an elasticity

of substitution between production workers, tech workers and other workers of 0.49.

Assuming a more general CES production function would not qualitatively change the

analysis.
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nologies. Consequently, all tasks z œ [0, I] will exclusively be performed by capital. We

also assume that firm j takes I as given when deciding how much labor and capital to

use, i.e. that technology is a quasi-fixed factor. Section B.2 relaxes this assumption by

endogenizing the firm’s decision to automate.

Finally, firm-level employment of capital Kj and labor Lj is given by:

⁄ 1

0
kj(z)dz = Kj and

⁄ 1

0
¸j(z)dz = Lj (B.7)

and we assume that each firm takes the wage W and the rental rate of capital R as given.

B.1.3 Conditional factor demands

If factors are paid their revenue marginal products and firms minimize costs, the unit-cost

of producing task z, pj(z), is given by:

pj(z) =

Y
___]

___[

R/“j(z) if z œ [0, I]

W if z œ (I, 1]
(B.8)

Given that equation (B.4) is a Cobb-Douglas production function using a continuum

of tasks on a unit-interval, cost shares must be constant and equal across all tasks in

equilibrium. In particular, we must have that:

’z : pj(z)yj(z) = ‡ ≠ 1
‡

PjYj (B.9)

where [‡ ≠ 1]/‡ < 1 accounts for the fact that firm j earns a profit PjYj/‡ because it

charges a constant price mark-up ‡/[‡ ≠ 1] > 1 over marginal costs.58

58Given constant returns to scale and no fixed costs, marginal and average costs are the

same such that a constant mark-up ‡/[‡ ≠ 1] over marginal costs implies that average

costs can be written as [‡ ≠ 1]/‡Pj. Consequently, profits per unit of output are given

by Pj ≠ [‡ ≠ 1]/‡Pj = Pj/‡ and profits can be written as PjYj/‡.
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Using equation (B.9) together with equations (B.5) and (B.8), it holds that:

kj(z) =

Y
___]

___[

‡≠1
‡

PjYj

R if z œ [0, I]

0 if z œ (I, 1]
¸j(z) =

Y
___]

___[

0 if z œ [0, I]

‡≠1
‡

PjYj

W if z œ (I, 1]
(B.10)

which gives demand for capital and labor for each task z, respectively.

Using equations (B.7) and (B.10) then solves for RKj and WLj:

RKj = I
‡ ≠ 1

‡
PjYj (B.11)

and

WLj = [1 ≠ I]‡ ≠ 1
‡

PjYj (B.12)

which gives the firm’s conditional factor demands.

B.1.4 Output as a Cobb-Douglas aggregate

In equilibrium, Pj is a constant mark-up ‡/[‡≠1] > 1 over the marginal cost of producing

Yj. Using the corresponding expression for the marginal cost of producing Yj given the

Cobb-Douglas production function in equation (B.4), we get that:

Pj = ‡

‡ ≠ 1 exp
3⁄ 1

0
ln(pj(z))dz

4
(B.13)

Substitute expressions for R and W from equations (B.11) and (B.12) into equation

(B.8). Then substitute equation (B.8) into equation (B.13). Taking logarithms, we

obtain:

ln(Yj) =
⁄ I

0
ln(“j(z))dz + I ln(Kj

I
) + [1 ≠ I] ln( Lj

1 ≠ I
)

Taking the exponential on both sides yields the following expression for firm output:

Yj = Ïj

5
Kj

I

6I 5
Lj

1 ≠ I

61≠I

(B.14)
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where Ïj is defined as:

Ïj © exp
A⁄ I

0
ln(“j(z))dz

B

B.1.5 Unconditional labor demand

Dividing equation (B.11) by equation (B.12) gives:

Kj

I
= 1

1 ≠ I

W

R
Lj (B.15)

and substituting equation (B.15) into equation (B.14) gives:

Yj = Ïj
Lj

1 ≠ I

5
W

R

6I

(B.16)

Substituting equation (B.16) into equation (B.12) and using equation (B.3):

Lj =
5
‡ ≠ 1

‡

6‡

Y ‘‡≠1
j W ≠‡[1 ≠ I]

C5
W

R

6I

Ïj

D‡≠1

(B.17)

with ‡ > 1 and I œ [0, 1].

Equation (B.17) is the firm’s unconditional demand for labor. It shows that firm-level

labor demand increases if there is an increase in the firm’s product demand captured by

an increase in Y if the shock is common across firms, or in ‘j if the product demand shock

is firm-specific. Equation (B.17) also shows that an increase in the automation possibility

frontier I has an ambiguous impact on labor demand. On the one hand, 1 ≠ I decreases

capturing a direct displacement e�ect. On the other hand, [W/R]IÏj increases capturing

a productivity e�ect from automation. To see that the productivity e�ect is positive, take

logs of [W/R]IÏj and di�erentiate with respect to I. We then get ln(W“j(I)/R) which

is positive given equation (B.6). Finally note that the productivity e�ect is increasing

in “j(I). That is, the productivity e�ect is larger and labor demand is more likely to

increase in a firm where capital is more productive at the automation possibility frontier.
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B.1.6 Output

Substitute equation (B.17) into equation (B.16) we get the following expression for output:

Yj = Y ‘‡≠1
j

C
‡

‡ ≠ 1
W 1≠IRI

Ïj

D≠‡

= Y ‘‡≠1
j P ≠‡

j (B.18)

with

Pj = ‡

‡ ≠ 1
W 1≠IRI

Ïj
(B.19)

The first ratio on the right-hand side of equation (B.19) is the constant price mark-up

and the second ratio is the marginal cost of producing Yj.

Equation (B.18) shows that firm-level output increases if there is an increase in the

firm’s product demand for a given output price. Equations (B.18) and (B.19) also show

that firm-level output increases if the automation possibility frontier I increases because

of a productivity e�ect from automation that decreases marginal costs and therefore the

output price. To see that the productivity e�ect decreases marginal costs, take logs of

W 1≠IRIÏ≠1
j and di�erentiate with respect to I. We then get ln(R/[W“j(I)]) which is

negative given equation (B.6).

B.1.7 Profits

Using equations (B.18) and (B.19), profits can be written as:

�j = PjYj

‡
=

Y ‘‡≠1
j

‡

C
‡

‡ ≠ 1
W 1≠IRI

Ïj

D1≠‡

(B.20)

showing that profits increase following an increase in product demand for a given output

price or following a decrease in the output price because of automation.
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B.2 Endogenous automation

B.2.1 Expected profits

Denote time periods by t and assume that firm j chooses if and when to automate by

maximizing expected profit:

max
Dj0,Dj1,...

E
Œÿ

t=0
—t [�jt ≠ DjtFj]

with Djt = 1 if firm j decides to automate at time t and Djt = 0 otherwise. Fj is a fixed

firm-specific cost of automation.59 — < 1 is the discount rate.60 Substituting �jt with

equation (B.20) gives:

max
Dj0,Dj1,...

E
Œÿ

t=0
—t

C
Yt‘

‡≠1
jt

‡
P 1≠‡

jt ≠ DjtFj

D

(B.21)

with Pjt given by equation (B.19).61

The adjustment cost of adopting a new technology Fj is fixed (in real terms) and

therefore indivisible. We also assume that these fixed costs cannot be recouped other

than through higher future profits, which also makes them irreversible. It is plausible

that investments in automation meet these two criteria: automation likely requires fixed

adjustment costs from reorganizing production processes, and these costs are irreversible

if they require e.g. the development of custom software or worker training.

59The model presented in Bonfiglioli et al. (2021) is similar to ours but di�ers in that

automation costs are assumed to be convex instead of fixed.
60Humlum (2021) assumes an annual discount rate — = 0.96.
61Note that we implicitly assume that automation does not result in a wage premium for

workers (who remain or are newly) employed at automating firms. This is in line with

our empirical findings.
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B.2.2 Technological progress

When a firm decides not to automate, it keeps producing at the same marginal cost. But

when a firm decides to automate, its marginal cost and therefore its output price de-

crease to minimum values determined by the technological frontier. We also assume that

these minimum values decrease over time because of underlying exogenous technological

progress captured by an increase over time in It (and possibly also “jt(z) for all or some

z that is common across firms). In particular, we assume that:

Pjt =

Y
___]

___[

Pjt≠1 if Djt≠1 = 0

Pt if Djt≠1 = 1
(B.22)

where Pt is the lowest possible output price using the most recent automation technologies

and given that the firm decided to automate in period t ≠ 1.62 Further assume that

technological progress is captured by a decrease in Pt over time given by Pt = µPt≠1 with

µ < 1.63

If the firm last adopted automating technologies in period t̃, the “age” of its technology

in period t is t≠ t̃. Its output price in period t can be written as Pjt = Pjt̃ = Ptµt̃≠t. That

is, the firm’s relative output price increases as its technology ages. Normalizing Pt = 1

in every period, we can rewrite the firm’s expected profit in equation (B.21) as:

max
Dj0,Dj1,...

E
Œÿ

t=0
—t

Ë
‡≠1Yt‘

‡≠1
jt µ(t̃≠t)(1≠‡) ≠ DjtFj

È
(B.23)

62The assumption that the decision to automate or otherwise invest happens one period

in advance is common in the literature estimating firm-level production functions, in-

cluding Humlum (2021); Doraszelski and Jaumandreu (2013); Olley and Pakes (1996).
63Strictly speaking Pt is each firm’s lowest possible relative output price. This implicitly

assumes that not all firms decide to automate (or not) at the same time despite common

technological progress, which in our model will be true because firms di�er in their fixed

adjustment costs.

20



where the firm can reset t̃ to t such that t̃ ≠ t = 0 if it chooses to automate (Djt≠1 = 1).

B.2.3 Spikes in automation expenditures

The indivisibility and irreversibility of automation costs imply that automation occurs

in relatively infrequent episodes of disproportionately large quantities. Consistent with

the literature on lumpy investment (Haltiwanger et al. 1999; Doms and Dunne 1998),

our model therefore predicts spikes in firms’ automation cost expenditures. In particular,

equation (B.23) captures that the firm’s expected profit decreases over time if it does not

automate given that µ < 1 and (t̃ ≠ t)(1 ≠ ‡) > 0 (because t Ø t̃ and ‡ > 1). The reason

for this is that the firm falls further behind the technology frontier as its technology ages.

To see this more formally, derive the firm’s per-period profit excluding adjustment

cost with respect to t to get (for given Yt and ‘jt):

ˆ[‡≠1Yt‘
‡≠1
jt µ(t̃≠t)(1≠‡)]

ˆt
= ‡ ≠ 1

‡
Yt‘

‡≠1
jt µ(t̃≠t)(1≠‡) ln(µ) < 0 (B.24)

where the last inequality follows given that ‡ > 1, t Ø t̃, and µ < 1. Said di�erently, the

increase in expected profits from automation implies that a firm will automate. However,

the firm will not automate in every period given its fixed costs of automation. In par-

ticular, immediately after the firm decides to automate it will wait a number of periods

until the increase in expected profit again outweighs its fixed adjustment cost.

In sum, our model predicts spikes in firms’ automation cost shares over time because

automation involves fixed costs and automation events are preceded and followed by

periods in which firms will not automate. Moreover, firms will automate at di�erent

points in time if they have di�erent fixed adjustment costs.

B.2.4 Shocks to product demand

Not only technological progress and the firm’s fixed cost of automation determine when

a firm automates. Shocks in the firm’s product demand will also increase profits which

could induce the firm to automate. To illustrate this, assume an increase in real income

Yt which increases the firm’s product demand. If the firm, after observing Yt, expects that
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Yt+1 will also be higher (e.g. because shocks to product demand follow a Markov process),

equation (B.24) shows that expected profits in t+1 will be higher. Importantly, equation

(B.24) further shows that this increases the firm’s increase in expected profits if it decides

to automate. The same is true for an increase in ‘jt. In sum, positive shocks to product

demand that persist over time increase the likelihood that the firm will automate.64

Therefore, persistent shocks to product demand are likely to (in part) predict au-

tomation events. However, they also directly a�ect firms’ future outcomes, making them

potential confounders for estimating the causal impact of automation. For example, equa-

tion (B.17) shows that a persistent positive product demand shock directly increases the

firm’s future labor demand. If this product demand shock is unobserved by the econome-

trician while it also induces the firm to automate, estimates of the impact of automation

on labor demand will be upward biased.

B.3 Empirical implications

Automation can empirically be measured as spikes in automation costs which we di-

rectly observe at firm-level, capturing Fj when Djt = 1. Assuming that Fj is larger for

larger firms, we express automation costs as a share of the firm’s total costs excluding

automation costs.65 When a firm decides to automate, our model predicts a spike in the

firm’s automation cost share because automation involves fixed costs and is preceded and

followed by periods in which the firm will not automate.

Further, our model highlights that common demand shocks (captured by Yt) that are

persistent over time may trigger automation in some firms, depending on the level of

firm-specific fixed costs. These common shocks are a threat to identification when using

64Only if product demand shocks are independently and identically distributed will they

not be correlated with the firm’s decision to automate. If product demand shocks are

i.i.d., they are not informative about the future and therefore will not a�ect the firm’s

decision at time t whether or not to automate.
65This is similar to Bonfiglioli et al. (2021) who construct a proxy for automation intensity

defined in their model as the firm’s chosen level of automation over capital expenditure.
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a firm-level event-study design: automation events may be correlated with such positive

common demand shocks, confounding the e�ects on firm-level outcomes. This motivates

using di�erence-in-di�erences, comparing firms that do and do not automate in any given

year, removing the common shock component.

However, firm-specific demand shocks (captured by ‘jt) may confound identification in

such a di�erence-in-di�erences set-up. In particular, our model points out that firms we

do not observe automating may fail to do so exactly because they do not experience (large

enough) persistent positive firm-specific demand shocks within our observation window.

If automating firms experience more positive demand shocks than do non-automating

firms, we will obtain a biased estimate of the impact of automation when comparing

automators to non-automators. This motivates our empirical approach of exploiting

firm automation timing among firms that we do observe automating: that is, we use a

di�erence-in-di�erences event-study design.

We can interpret the two identification assumptions of parallel trends and no antici-

pation for our di�erence-in-di�erences event-study design, outlined in Section 4.2, in the

context of this model:

1. Firm-specific product demand shocks must be identically and independently dis-

tributed for automating firms. That is, ‘jt is i.i.d. for firms which automate at some

point in our observation window. If these firm-specific product demand shocks are

not i.i.d. among automators, the firm’s decision of when to automate will be posi-

tively correlated with persistent firm-specific product demand shocks and its direct

impact on firm outcomes in the future. I.i.d. ‘jt result in parallel trends between

firms that automate at di�erent points in time. Our empirical analyses provide

evidence for this parallel trends assumption by showing that pre-event trends are

mostly similar for firms that have an automation event now compared to those that

have an automation event later. We also match individual incumbent workers on

observable characteristics and show there are no pre-trends in their labor market

outcomes.

Related theories make similar assumptions. Bonfiglioli et al. (2021) present a static
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model, thereby implicitly assuming that firm-specific shocks in product demand

are i.i.d. Humlum (2021) assumes firm-specific productivity (instead of product

demand) shocks that evolve according to a Markov chain of length three. He then

draws on the literature that estimates firm-level production functions to estimate

parameters in the Markov chain. Assuming that any remaining unobserved produc-

tivity shocks are i.i.d., he then matches pairs of firms on initial firm-level outcomes

before one (but not the other) firm automates to causally estimate the impact of

automation on firm-level outcomes.

2. No anticipation implies firms do not anticipate automation when determining how

many workers to employ and how much to produce. This is captured by our as-

sumption (in section B.1) that firms treat their technology as given. Moreover, we

implicitly assume that not only firms but also workers take the firm’s technology

as given when making decisions about labor supply.

Similar assumptions are made in related papers. Humlum (2021) makes similar

no-anticipation assumptions for firms and workers, while also explicitly modeling

workers’ labor supply in general dynamic equilibrium. Although Bonfiglioli et al.

(2021) present a static model, they also implicitly assume that firms treat their

technology as quasi-fixed when maximizing operating profits and that, just as we

do here, firm-level labor supply is perfectly elastic.

Arguably, the non-anticipation assumption is less likely to hold for firms than for

their incumbent workers (i.e. workers with at least 3 years of tenure). One rea-

son is that firms (instead of all their incumbent workers) decide whether or not

to automate and that firms are better informed about the likely consequences of

automation (and even control them). Another reason is that employment at the

firm-level is more flexible, e.g. because of regular turnover or fixed-term contracts,

than incumbent workers’ perceived outside options. Finally, incumbent workers

(rather than recent hires employed at the firm) are less likely to adjust their labor

supply in anticipation of an automation event. Therefore, we are more cautious in

interpreting e�ects of automation at the firm level as causal but are more confident
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at the incumbent worker level.
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C Automation events

C.1 Automation spike frequency

Table C.1. Spike frequency

Spike frequency N firms % of N
firms

0 25,155 70.7
1 8,354 23.5
2 1,772 5.0
3 266 0.7
4 or 5 33 0.1
Total 35,580 100

Notes: Spike frequency is defined as the to-
tal number of spikes occurring over 2000–
2016. The total number of firms is 35,580
and the total number of firms with at least
one automation cost share spike is 10,425.

C.2 Automation events across sectors and firm size classes

Table C.2. Share of firms ever having an automation spike

By sector
Manufacturing 0.29
Construction 0.25
Wholesale & retail trade 0.27
Transportation & storage 0.30
Accommodation & food serving 0.27
Information & communication 0.39
Prof’l, scientific & technical activities 0.33
Administrative & support activities 0.30

By firm size
1-19 employees 0.26
20-49 employees 0.30
50-99 employees 0.31
100-199 employees 0.29
200-499 employees 0.32
Ø500 employees 0.28

Notes: N=35,580 firms.
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C.3 Automation and total costs around automation events

Figure C.1 shows the two components making up our automation spike measure, au-

tomation costs and total costs, for a balanced sample of firms around automation events.

This highlights that automation spikes are driven by increases in automation costs, not

decreases in total costs.

Figure C.1. Automation costs and total costs around automation spikes

60
00

0
64

00
0

68
00

0
72

00
0

76
00

0
80

00
0

0
20

0
40

0
60

0
80

0
10

00

-3 -2 -1 0 1 2 3 4
Year relative to automation event

Real automation costs (left axis)
Real total costs (right axis)

Notes: Balanced sample of firms.

27



D Firm-level analyses

D.1 Predicting automation events

Table D.1 estimates a firm-level linear probability model where the dependent variable

is a dummy for the firm having at least one automation spike over 2000–2016. This

table highlights that firms that have automation events are di�erent from those that do

not. In particular, the probability of having an automation event is higher for firms with

younger and more highly educated workers and with a higher fraction of men, firms that

pay higher wages, larger firms, and firms in Information & communication, Professional,

scientific & technical activities, Transportation & storage, and Administrative & support

activities.

Table D.1. Correlates of a firm ever having an automation spike

Mean annual wage 0.0009*** Manufacturing reference

(0.0002)
Share of women -0.0259** Construction -0.0003

(0.0126) (0.0094)
Mean worker age -0.0034*** Wholesale & retail trade 0.0161**

(0.0005) (0.0080)
Share high educated 0.0368* Transportation & storage 0.0414***

(0.0197) (0.0102)
1–19 employees reference Accommodation & food serving -0.0022

(0.0155)
20–49 employees 0.1146*** Information & communication 0.1094***

(0.0060) (0.0123)
50–99 employees 0.1218*** Prof’l, scientific, & technical activities 0.0580***

(0.0074) (0.0112)
100–199 employees 0.1174*** Administrative & support activities 0.0262***

(0.0090) (0.0101)
200–499 employees 0.1317***

(0.0113)
Ø500 employees 0.1133*** Constant 0.2856***

(0.0141) (0.0230)

Notes: 35,577 observations, each observation is a unique firm. The dependent variable
is having an automation spike at any point in the sample. Mean real annual wage in
thousands of euros. Standard errors in parentheses. *p<0.10, **p<0.05, ***p<0.01.
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D.2 Employment growth for automating and non-automating

firms: balanced panel

Figure D.1 uses the balanced panel of firms existing over the entire 17-year period

and plots a time series of firm-level employment averaged across automating and non-

automating firms with both series normalized to 100 in 2000.

Figure D.1. Average firm-level employment for firms with and without automation
events
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Notes: All firms existing over the entire 17-year period 2000–2016. N = 399
for firms with an automation event and N = 623 for firms without an
automation event.

D.3 Di�erence-in-di�erences with non-automating firms

Here, we construct a di�erent control group for our main analysis. Instead of using firms

that automate later, we use firms that do not automate over the period we observe them.

We follow the same steps in constructing the sample as a stacked di�erence-in-di�erences

as discussed in the main text and estimate the same models.

Figure D.2 reports the findings for employment and wages. All estimates are weighted

by firm size. The top figures reveal that for employment there are clear divergent pre-

trends between automating and non-automating firms (right), which do not seem to exist
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when comparing automating with later-automating firms (left). By contrast, for wages

the pre-trends appear quite similar, while we find almost no significant impacts on wages

using non-automating firms and small positive impacts using later-automating firms as

control group.

An important limitation of this analysis is that we do not observe automation costs

for firms in each year. Hence, we cannot be sure that firms do not automate in a year

where we do not observe them in the survey. Restricting the sample to firms that we

observe each year would leave us with a very small dataset. This, along with the clear

di�erential employment trends between automating and non-automating firms observed

here and in the balanced panel in Appendix D.2, supports our design using later-treated

firms.
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Figure D.2. Using later-automating (left) vs non-automating firms (right) as control group
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(c) Log daily wage (baseline)
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Notes: N = 865, 848 for the sample using non-automating firms as control group and N = 170, 022 for the sample using
later-automating firms as control group. Whiskers represent 95 percent confidence intervals.
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D.4 Comparison to import-based automation measure

Here, we compare firms with and without automation events to importers and non-

importers of automation technology: this is done for the subset of 30, 291 firms in our

main sample where we can construct time-invariant importer information.

Table D.2 shows that firms that import automation technology are substantially larger

than firms that do not import such technology, consistent with findings for other countries

(e.g. see Bonfiglioli et al. 2021 and Humlum 2021). In particular, importing firms are

around 131% (exp(0.839) ≠ 1) larger than non-importers, while firms with automation

cost spikes are only around 8.5% larger than firms without such spikes.

Table D.3 shows that, for all firm-level measures of automation, automating firms also

have faster employment and wage bill but not daily wage growth: however, employment

growth and wage bill di�erences are substantially larger when comparing automation

importers to non-importers. Specifically, (net) importers have around 3.7% faster wage

bill growth compared to non-(net-)importers, whereas firms with automation cost spikes

have 1.2% faster wage bill growth compared to firms without such events.

Table D.4 considers whether automation events are correlated with firms importing

automation technology at the firm level. We find that firms with non-zero mean (net)

automation imports are more likely to have automation events, implying that some firms

with automation events are also importers of automation technology. However, while over

30% of firms in this sample have an automation event, only around 8% are importers.

Further, Table D.5 shows that the correlation between automation events and occurrence

of automation imports is negligible within firms: this mirrors our finding for the within-

firm correlation between automation cost shares and automation import values reported

in Appendix Table A.5.

Lastly, we estimate the impact of automation cost spikes on firm-level employment,

wage, and wagebill growth for the sample of firms with automation events where we

observe import data, distinguishing between impacts for all firms and for the subsample of

firms which also import automation technology. Figure D.3 shows di�erence-in-di�erences

estimates as in equation 3. This shows that automation importers experience employment
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Table D.2. Correlation between firm size and automation type

Dependent variable: Log firm-level number of employees
Automation cost spike Automation imports

(1) (2) (3) (4)
Automating 0.078*** 0.085*** 0.856*** 0.839***

(0.013) (0.013) (0.022) (0.022)
Sector fixed e�ects No Yes No Yes

Notes: N = 30,291 firm-level observations. Automation imports measured
as non-zero mean automation imports at the firm level. Sector fixed e�ects
are two-digit sector dummies. *p<0.10, **p<0.05, ***p<0.01.

Table D.3. Employment, wage, and wagebill growth for firms with automation
cost spikes and non-zero automation imports

Dependent variable: � log
employment

� log mean
daily wage

� log wage
bill

(1) (2) (3)
Cost spikes 0.012** 0.000 0.012**

(0.006) (0.002) (0.005)

(4) (5) (6)
Imports 0.0311*** 0.006* 0.037***

(0.008) (0.004) (0.006)

(7) (8) (9)
Net imports 0.030*** 0.006* 0.036***

(0.008) (0.003) (0.006)

Notes: N = 152,550 firm-year observations. All models include calen-
dar year fixed e�ects, and initial-year values for log employment and
log mean daily wage. All models are weighted by the inverse of the
number of firm-level observations multiplied by baseline firm-level em-
ployment size. Standard errors are clustered at the firm-level. *p<0.10,
**p<0.05, ***p<0.01.
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Table D.4. Firm-level correlation between automation events and automation imports

Dependent variable: Dummy for firm having an automation cost spike
(1) (2) (3) (4)

Importer 0.023* 0.029**
(0.010) (0.011)

Net importer 0.023* 0.029**
(0.010) (0.011)

Controls No Yes No Yes

Notes: N = 30,291 firm observations, where 31% of firms have automa-
tion cost spikes, and 8.2% (7.9%) have non-zero (net) imports. Controls
are log total costs and sector fixed e�ects. Standard errors are clustered
at the firm-level. *p<0.10, **p<0.05, ***p<0.01.

Table D.5. Within-firm correlation between automation events and automation imports

Dependent variable: Dummy for firm having an automation cost spike
(1) (2) (3) (4)

Importer 0.005 0.002 0.003 0.003
(0.005) (0.005) (0.005) (0.005)

(5) (6) (7) (8)
Net importer 0.003 0.000 0.001 -0.001

(0.005) (0.005) (0.005) (0.005)

Firm fixed e�ects Yes Yes Yes Yes
Year fixed e�ects No Yes No Yes
Log total costs No No Yes Yes

Notes: N = 110,805 firm-year observations. Standard errors are clustered at
the firm-level. *p<0.10, **p<0.05, ***p<0.01.

and wage growth around automation events.
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Figure D.3. Firm-level outcomes for automating firms, di�erence-in-di�erences using
event timing
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E Worker-level analyses

E.1 Sample construction

For each calendar year y we define a set of potential treatment and control group au-

tomation events as follows. Potential treatment events are defined as a firm having its

first automation event in treatment year c. c is between 2003 and 2011, so that for each

automation event we at least have a window of three years before and five years after

the event. This gives us 3,004 potential treatment group events. Potential control group

events for c are defined as firms that have their first automation event in year c + 5 or

later. Hence, these events have to occur between 2008 and 2016. This gives us 21,289

potential control group events.

Columns (1) and (2) in Table E.1 show the number of potential treatment and control

events per calendar year. Note that our procedure implies that multiple control group

events can involve the same firm, but for di�erent calendar years. It is also possible that

one treatment group event and one or more control group events involve the same firm in

di�erent calendar years. For example, a firm that has its first automation event in 2010

can be a potential treatment event in 2010, but also serve as a potential control event

for treatment events in 2003, 2004, or 2005. Similarly, a firm having its first automation

event in 2011 can serve as a control group event for treatment events in 2003, 2004,

2005, or 2006. For our 21,289 potential control events, 20,572 involve a firm that is

involved in more than one potential control event, while 717 events involve a firm that

is involved in only one potential control event. Firms with potential control events are

on average involved in 4.7 potential control events, with a maximum of 9 events. For our

3,004 potential treated events, 1,288 involve a firm that is also involved in at least one

potential control event in another year and 1,716 involve a firm that is not involved in a

potential control event.

We then merge our firm-level data to worker data and keep only events for which we

can find at least one incumbent worker who is between 18 and 65 years old at · = ≠1.

This leaves us with 2,995 potential treatment events merged to 192,755 incumbent workers
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and 21,115 potential control events merged to 1,132,190 incumbent workers. We then

apply some sample selections to drop outliers. In particular, we drop workers with yearly

earnings more than 500,000 euros in any one year or an average daily wage above 2,000

euros. We also exclude students. Finally, we require incumbents to not receive any

benefits in the three years before treatment. This leaves us with 997, 057 potential control

workers and 162, 493 potential treated workers.66

Finally, we match treated and control group workers on pre-treatment annual real

wage income, separately by sector and calendar year. While the match is exact for

calendar year and sector, we use coarsened exact matching (CEM, see Iacus et al. 2012;

Blackwell et al. 2009) for pre-treatment income. To this end, we construct separate strata

for each 10 deciles of real wage income, as well as separate bins for the 99th and 99.9th

percentiles, in each of the three pre-treatment years · = ≠3, ≠2, ≠1. We then match

treated workers to control group workers for each of these income bins, while additionally

requiring them to be observed in the same calendar year, and work in the same sector

one year prior to treatment. We include calendar year and sector matching to ensure

we are not capturing sector-specific business cycle e�ects, or other unobserved time-

varying shocks a�ecting workers based on their original sector of employment. As such,

each treated worker is matched to a set of controls from the same calendar and sector

and belongs to the same pre-treatment earnings percentile bin. This procedure results

in 29,224 strata for incumbent workers, and in doing so can match 98.7% of treated

incumbents (using 94.2% of control group incumbents).

After matching, our sample contains 1, 098, 924 incumbent workers in treatment and

control groups. Of those incumbent workers, 160, 419 are treated and 938, 505 are con-

trols. Our estimation sample of firms for identifying these treated and control group

workers contains 6, 179 unique firms, all of which experience an automation event at

some point over the period. As indicated in columns (3) and (4) of Table E.1, workers

employed at 2, 981 firms are treated, and workers employed at 4, 464 firms serve as con-

trols at least once. This entails that 1, 266 firms who serve as control events in one year,

66Appendix E.2 below provides further summary statistics of our worker data.
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Table E.1. Number of treatment and control events at the firm level by calendar year

Potential events: Events after matching:
Control Treatment Control Treatment

Year 2003 3,474 224 3,399 223
Year 2004 3,245 242 3,185 240
Year 2005 2,936 237 2,890 235
Year 2006 2,688 299 2,651 300
Year 2007 2,415 380 2,350 379
Year 2008 2,167 394 2,125 392
Year 2009 1,887 418 1,853 414
Year 2010 1,510 406 1,480 401
Year 2011 967 401 951 397
Total 21,289 3,004 20,884 2,981
Unique firms involved 4,512 3,004 4,464 2,981
Unique firms only used once 717 1,716 734 1,715

Notes: Table shows the number of potential treatment and control events, and
the number of events remaining after matching, for each calendar year.

also serve as treatment event in an earlier year.

E.2 Summary statistics for workers

Table E.2 provides summary statistics on our sample of incumbent workers across all

years. Column 1 shows descriptives before matching, and columns 2 and 3 show de-

scriptives for our matched sample of incumbent workers (both treated and control).

Note that we have 160, 419 + 938, 505 = 1, 098, 924 observations for incumbents: given

our observation window of 8 years (· = ≠3 through · = 4) this adds up to the

1, 098, 924 ◊ 8 = 8, 791, 392 incumbent worker observations used in our regressions. Note

that column 1 has more observations as this also includes the small fraction of workers

not used as a treated worker (because no match could be found for them) or not used as

a control group worker.
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Table E.2. Descriptives for incumbent workers
(1) (2) (3)

Full sample Treated workers Control workers

Annual wage income 40244.15 39708.60 39780.08
(27344.07) (26616.67) (26866.99)

Daily wage if employed 117.41 110.35 110.33
(75.09) (76.21) (75.98)

Annual non-employment duration (in days) 22.22 5.43 5.19
(81.06) (32.46) (31.82)

Hazard of leaving the firm 0.05 0.00 0.00
(0.21) (0.00) (0.00)

Total benefits 443.74 0.00 0.00
(2992.76) (0.00) (0.00)

Probability of entering early retirement 0.01 0.00 0.00
(0.11) (0.00) (0.00)

Probability of becoming self-employed 0.02 0.01 0.01
(0.13) (0.09) (0.11)

Share female 0.26 0.35 0.32
(0.44) (0.48) (0.47)

Foreign born or foreign-born parents 0.16 0.18 0.16
(0.36) (0.38) (0.37)

Age 42.11 40.24 40.11
(10.20) (9.99) (9.92)

Calendar year 2006.88 2006.14 2006.14
(3.36) (2.35) (2.35)

Manufacturing 0.36 0.20 0.20
(0.48) (0.40) (0.40)

Construction 0.11 0.07 0.07
(0.32) (0.25) (0.25)

Wholesale & retail trade 0.19 0.33 0.33
(0.40) (0.47) (0.47)

Transportation & storage 0.09 0.08 0.08
(0.28) (0.28) (0.28)

Accommodation & food serving 0.02 0.02 0.02
(0.13) (0.12) (0.12)

Information & communication 0.06 0.08 0.08
(0.23) (0.27) (0.27)

Prof’l, scientific, & technical activities 0.08 0.09 0.09
(0.27) (0.29) (0.29)

Administrative & support activities 0.09 0.13 0.13
(0.29) (0.33) (0.33)

0–19 employees 0.05 0.05 0.07
(0.22) (0.21) (0.26)

20–49 employees 0.14 0.13 0.17
(0.35) (0.34) (0.37)

50–99 employees 0.11 0.11 0.13
(0.32) (0.31) (0.34)

100–199 employees 0.12 0.11 0.13
(0.33) (0.32) (0.34)

200–499 employees 0.15 0.14 0.16
(0.36) (0.35) (0.36)

Ø500 employees 0.43 0.46 0.34
(0.49) (0.50) (0.47)

Missing education 0.71 0.71 0.71
(0.45) (0.45) (0.45)

Low education 0.06 0.05 0.05
(0.23) (0.23) (0.22)

Middle education 0.12 0.12 0.12
(0.32) (0.32) (0.32)

High education 0.12 0.12 0.12
(0.32) (0.32) (0.33)

N 9,276,400 160,419 938,505

Notes: Column 1 shows unweighted means for all incumbent worker-year observations. Columns 2 and 3
show weighted means for the full regression sample at · = ≠1, where weights are obtained from coarsened
exact matching as described in Appendix E.1. Standard deviations in parentheses.



E.3 Predicting automation event timing

To test whether the timing of automation events is random, one can try to predict the

timing of automation events based on observable characteristics of automating firms. In

particular, using Brier (1950) skill scores, we can test whether a predictive model with

observables performs better than a random prediction where we uniformly distribute

automation events across years where the automating firms are observed.

Specifically, Brier (1950) skill scores for the ten k-folded samples reported in Table E.3

are constructed as follows. We draw a 10 percent random sample without replacement

from the sample of 10,425 automating firms, and do this ten times: these are the test

samples. The remaining 90 percent of observations for each of these test samples consti-

tute the ten training samples. We then estimate a logit model with firm fixed e�ects and

time-varying observables (firm average log yearly and daily wages, log total wage bill, log

number of workers, log average worker age, log average worker tenure at the firm, share

female and a full set of interactions) for each training sample and predict the probability

of having a spike in a year for each corresponding test sample, assuming that each firm

will have exactly one spike. We also calculate the spike probability by year per firm from

random prediction, simply as one over the number of years the firm is observed. For the

model-based and random predictions in each of the ten test samples, we calculate the

Brier score, defined as the mean squared di�erence between the prediction and the actual

outcome. Lastly, we obtain the Brier skill score as 1 ≠ Briermodel
Brierrandom

, reflecting the percent

prediction improvement of the model relative to random prediction. Table E.3 shows that

these improvements are low, ranging between 2.6 and 3.4%, suggesting that the timing of

automation events is essentially random with respect to firms’ observed characteristics.
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Table E.3. Brier skill scores for predicting automation event timing

Sample N Brier skill score

1 127,485 0.029
2 127,463 0.027
3 126,753 0.027
4 127,708 0.026
5 126,890 0.030
6 126,328 0.028
7 127,921 0.034
8 127,145 0.033
9 126,676 0.033
10 127,475 0.032

E.4 E�ects on hourly wages

Figure E.1 shows e�ects on incumbents log hourly (rather than daily) wages and relative

hours worked, both of which which we observe only for 2006 onward. In line with the

impacts on daily wages we find no statistically significant impacts on hourly wages.

Figure E.1. Impact of automation on incumbents’ log hourly wages and hours worked
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Notes: N=2,042,874 for hourly wages and N=2,128,936 for hours worked.
Whiskers represent 95 percent confidence intervals.
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E.5 E�ect heterogeneity

Here, we consider e�ect heterogeneity by incumbent characteristics. For succinctness, we

only show estimates for relative annual wage earnings, as this is the summary measure

capturing all other impacts. Any noteworthy di�erences in results for other worker-level

outcomes are described where relevant.

We consider how incumbent workers with di�erent characteristics fare after an au-

tomation event. For each of the groups considered here, we contrast the e�ect against

the same group at the control firm by using an interaction term – this results in a de-

composition of the mean e�ects found in the main text. In particular, we estimate the

following model:

yijt = –+—Di +“post· + ”0 ◊ treati ◊posti· +
ÿ

k

[”k ◊ treati ◊ post· ◊ zki]+⁄Xijt +Áijt,

(E.1)

where, as before, i indexes workers, j firms, t calendar time, and · time relative to the

automation event. For succinctness, we estimate the average annual e�ect over the entire

post-treatment period rather than reporting the year-by-year coe�cients. As such, post·

is a dummy variable indicating the post-treatment period (i.e. · Ø 0). Further, zki is

a dimension of worker heterogeneity, such as gender, age, or sector, containing k + 1

categories– all time-varying characteristics are measured in the year before automation.

In addition to the controls included in equation (4), Xijt also contains zki as well as the

interaction terms zki ◊ treati and zki ◊ posti. In equation (E.1), ”0 gives the estimated

treatment e�ect for the reference group, and ”k the deviation from that e�ect for category

k of worker characteristic zi. —Di capture worker fixed e�ects, and standard errors are

clustered at the treatment level as before.

Table E.4 summarizes how average post-treatment e�ects for annual wage income

di�er across sectors, and for workers of di�erent genders, with di�erent contract types,

and in di�erent age-specific wage quartiles. Results by firm size, worker age, and eduation

level are reported in the main text.

In column 1 of Table E.4, we consider to what extent the impacts of automation di�er
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depending on which sector the worker’s firm belongs to: that is, our treatment e�ect is

interacted with workers’ sector of employment in · = ≠1. For this model, Manufacturing

is the reference category. Note that sectoral di�erences may exist for various reasons.

First, automation technologies may be sector-specific, and di�er in terms of how much

they displace labor. For example, it is possible that industrial or warehouse robots are

more labor-replacing than automated check-out systems. Second, the workers employed

in these di�erent industries may have di�erent characteristics (including unobservable

ones), making the impacts di�er. Third, to the extent that skills are industry-specific,

sectoral labor market conditions matter: displacement would be more costly in sectors

with an excess supply of workers. While we cannot distinguish between these di�erent ex-

planations, it is still important to consider whether our results are driven by displacement

e�ects in a subset of sectors, or whether the found impacts are pervasive. Our finding

here is that automation leads to wage income losses that are very pervasive across sectors:

this highlights that robotics is likely not the only automation technology displacing work-

ers from their jobs. The exception is Accommodation & food serving, where no income

losses (nor increases in firm separation) are detected. However, Accommodation & food

serving is also a sector with one of the lowest automation expenditures per worker, as

well as contributing only 2% of the sample of incumbent workers. On the other hand, in-

cumbent workers in Wholesale & retail and Manufacturing do experience earnings losses

– together, these two sectors employ over half of all incumbents in our sample (33% and

20%, respectively). We find that automation leads to increased firm separation rates for

all sectors except Accommodation & food serving and Construction. All in all, we find

that automation events originating in di�erent sectors have qualitatively similar impacts

on workers.

Similarly, we do not find any statistically significant di�erences in impact by gender

(column 2). If anything, the coe�cient suggests wage losses are larger for female workers,

which would be consistent with recent work from the displacement literature showing

that job loss leads to larger losses for women (Illing et al., 2021).

While we also do not find statistically significant di�erences by workers’ contract type
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(column 3), but the estimates suggest losses are larger for workers with flexible con-

tracts as opposed to open-ended contracts. This could reflect di�erences in employment

protection.

Unfortunately, our data do not contain any occupation information, and only limited

education information. For this reason, we obtain an alternative measure of workers’ skill

level by calculating each worker’s wage rank by age in · = ≠1. We then group workers

into quartiles based on this rank. For example, the top-quartile workers in this measure

are those who earn in the top 25% of earnings across the sample for workers of their age

in the year before the automation event.

Results are reported in the fourth column of Table E.4: workers in the lowest age-

specific wage quartile are used as the reference category. We do not detect any statistically

significant di�erences: that is, workers across all wage quartiles experience displacement

from automation. However, the lowest-paid workers (i.e. those in the bottom two quar-

tiles) do experience the largest wage earnings losses, compared to those paid above the

median wage (the top two quartiles).

Di�erences in losses across the wage distribution may of course be partially driven by

di�erences in the firms where automation spikes occur: lower losses for one “skill” group

may be o�set by higher exposure to automation events in our sample. While the estimates

in column (4) matter for the average worker’s exposure to displacement from automation,

we are also interested in which workers are displaced within firms. Therefore, the fifth

column in Table E.4 reports estimates by workers’ age-specific within-firm wage quartile.

That is, the bottom quartile reflects incumbents who are in the lowest 25 percent of their

firm’s wage distribution for their age.67 If anything, this reveals that the medium-paid

workers by age within firms appear to lose more wage income than do workers in the top

and bottom quartiles, although these di�erences are not statistically significant. Overall,

these results are consistent with our findings for education level reported in the main

67Note that these quartiles cannot be calculated for the smallest firms: however, all

previous findings are very similar in this subsample, suggesting that this is not driving

the results.
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Table E.4. Annual wage income e�ects by incumbents’ characteristics

(1) Sector (3) Contract type
Manufacturing (reference) -1.66** Open-ended contract (reference) -1.74***

(0.83) (0.44)
Deviations from reference group for: Deviation from reference group for:

Construction 0.25 Flexible contract -2.34
(1.52) (3.11)

Wholesale & retail trade -0.58
(1.13) (4) Overall age-specific wage quartile

Transportation & storage 1.41 Bottom quartile (reference) -2.10*
(1.52) (1.24)

Accommodation & food serving 2.89** Deviations from reference group for:

(1.43) Second quartile -0.06
Information & communication -1.05 (1.20)

(1.55) Third quartile 0.44
Prof’l, scientific, & technical activities -0.95 (1.24)

(1.53) Top quartile 0.14
Administrative & support activities -1.09

(2.46) (5) Within-firm age-specific wage quartile
Bottom quartile (reference) -1.38

(2) Gender (1.78)
Male (reference) -1.55*** Deviations from reference group for:

(0.56) Second quartile -0.86
Deviation from reference group for: (2.12)
Female -0.88 Third quartile -1.02

(0.73) (2.22)
Top quartile -0.26

(1.77)

Notes: Estimates from five separate models, N=8,791,392 for models (1) through (4); N=6,418,104
for model (5). All coe�cients are average annual e�ects over the post-treatment period (· = 0
through · = 4): estimates have been multiplied by 100 to reflect percentages. *p<0.10, **p<0.05,
***p<0.01.

text. However, we should be careful about drawing strong conclusions from columns (4)

and (5) of Table E.4 since they may be capturing other factors than pure worker skill,

such as the quality of the worker-firm match.

Lastly, we study e�ect heterogeneity by restricting our data to the subset of incum-

bents working in automating firms that import automation technology. Table E.5 shows

that earnings declines are not found in this selected subsample. This is similar to our

findings for the largest firms, and highlights that e�ects for importers may reflect the fact

that these are large and high-productivity firms.
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Table E.5. Average annual impacts for incumbents in importing firms

Annual
wage

income

Firm
separation

hazard

Days in
non-

employment

Log daily
wage

Automation event impact -0.47 0.23 2.35 0.38
(1.33) (1.07) (2.01) (1.39)

N 1,418,320 1,339,577 1,418,320 1,374,858

Notes: Importing firms are those who import automation technology worth at
least 10,000 euros.

E.6 Incumbent workers versus recent hires

Our identification strategy for the impacts of automation is to consider individual workers

who have a pre-existing working relationship with the firm, as evidenced by at least three

years of firm tenure. Here we estimate our models for a second group of workers: those

with less than three years of firm tenure prior to the automation event. Compared to

incumbent workers, these workers are employed at a firm in · = ≠1 but not in · = ≠3

– we therefore refer to them as recent hires. This worker group is more likely to hold

temporary contracts, which could imply di�erent treatment e�ects. However, causal

identification of the treatment e�ect for recent hires could prove more di�cult as they

may have been hired in anticipation of the automation event. We therefore analyze them

separately, and put more stock in our results for incumbent workers.

We estimate equation (4) for recent hires in the same way we have for incumbents,

while additionally creating a zero income bin when matching on pre-event income.68 After

matching, our sample contains 314, 484 unique recent hires (63, 178 of whom are treated):

given our observation window of 8 years (· = ≠3 through · = 4) this results in 2, 515, 872

observations.

We find income losses from automation for recent hires that are only half the size

of those of incumbents, as shown in Figure E.2. Moreover, relative to recent hires in

the control group, point estimates are not significant – hence, recent hires do not have

di�erent annual wage earnings as a result of automation. This could be the case because

68We obtain 30,679 strata for recent hires, and can match 96.1% of treated recent hires

(using 80.0% of control group recent hires).

46



Figure E.2. Relative annual wage income e�ects for incumbents versus recent hires
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Notes: N=8,791,392 for incumbents and N=2,515,872 for recent hires.
Whiskers represent 95 percent confidence intervals.

recent hires have built up less firm-specific human capital, and therefore are more able to

adapt to new job tasks either within the same firm or when moving to a new employer.

However, it may also be the case that recent hires do not lose income because these workers

are in part hired in anticipation of the automation event – in this case their outcomes

are endogenous to the event. Consistent with new hires being better matched (or able

to adjust) to their firms’ new technologies, we find small positive (albeit statistically

insignificant) wage e�ects for this group, on the order of 1.0–1.4%.

47



E.7 Robustness tests

E.7.1 Constructing placebo events

In this subsection we report descriptive statistics for our placebo analysis using spikes in

other material fixed assets. The results of this analysis are reported in section E.4b.

Table E.6 shows the distributions of automation costs and investments in other ma-

terial assets in the overlapping sample of firms, both in real euros and in real euros per

worker. Table E.7 shows the frequency of both types of spikes in this sample, where we

consider spikes in other material fixed assets placebo spikes. Lastly, Figure E.3 shows

the evolution of investments in material fixed assets around placebo spikes. Results for

worker impacts are shown in the main text.

Table E.6. Automation costs and other material asset investments distributions

Other material

Automation cost fixed assets

level per

worker

level per

worker

p5 0 0 0 0
p10 0 0 0 0
p25 0 0 0 0
p50 18,285 324 1,213 23
p75 75,758 1,043 34,277 456
p90 263,129 2,373 180,821 1,684
p95 620,724 3,839 473,242 3,344
mean 271,888 1,125 181,772 1,067
mean excl. zeros 377,964 1,564 349,980 2,054
N firms ◊ years 171,875 171,875
N firms ◊ years with 0 costs 48,237 82,607

Notes: All numbers are in 2015 euros.
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Table E.7. Automation and placebo events

Percentage of firms with event type:

Placebo (other
Nr of spikes Automation material fixed assets)
0 71.9 44.6
1 22.5 42.0
2 4.8 11.8
3 0.7 1.5
Ø4 0.1 0.1

Notes: Overlapping sample of firms, N = 25,103.

Figure E.3. Placebo events: Spikes in other material fixed assets
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E.7.2 Robustness to other firm events and placebo events

Figure E.4. Robustness tests

(a) Robustness to other firm events

-4
-3

-2
-1

0
1

2
An

nu
al

 w
ag

e 
in

co
m

e 
ch

an
ge

 (%
)

-3 -2 -1 0 1 2 3 4
Year relative to automation event

Baseline results
Firm-level matching Excl. outliers in- & outside window
Excl. firm events Excl. management change

(b) Comparison to placebo events
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E.7.3 Alternative definitions of automation events

Rather than using automation cost shares (i.e. automation costs in total costs), we

can construct automation events from sharp increases in automation outlays per worker.
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This is more in the spirit of a literature studying the impact of increasing the number of

robots per worker. Within this event definition, we then also vary the point(s) in time

where we measure employment – either for the years where we have data on total costs

(“AC/worker”); or for the full set of years (“AC/worker, full emp data”); or only for the

years pre-dating the candidate automation event (“AC/worker, pre-event emp data”).

All variations produce similar results to our baseline estimates, as seen in panel (a) of

Figure E.5.

Further, we show that results are robust to varying the spike threshold from two to

four times the average automation costs (our baseline is thrice the average automation

costs). Panel (b) in Figure E.5 reveals that estimated e�ect sizes are somewhat larger the

higher the threshold, as expected, but these di�erences are not statistically significant.

This highlights that our results are not driven by the specific spike size cut-o� we employ

in our baseline estimates.
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Figure E.5. Robustness to di�erent definitions of automation events

(a) Automation costs per worker
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(b) Changes in spike threshold for automation cost shares
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E.7.4 Changes in model specification

Here, we change our model specification in a number of ways. In particular, compared to

our baseline estimates, Figure E.6 shows results when additionally matching workers on

their firm tenure in years (that is, beyond the three years of firm tenure that all treated

and control group workers have); additionally matching workers on firm size; and when

removing individual fixed e�ects from the model (these are then replaced by dummies

52



for worker gender and nationality, as well as fixed e�ects for firm size categories, and for

firm sector). Although estimates without individual fixed e�ects are a little less precise,

results are extremely robust to these changes in specification.

Figure E.6. Robustness to changes in model specification
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E.7.5 Randomization test

We subject our results to a randomization test as first introduced by Fisher (1935).69 To

do this, we take our sample of 35,580 firms, randomly draw firms with replacement, and

then for each of these firms randomly assign a year to have a placebo automation event.70

We then construct treated and control firms based on these placebo events. We repeat

this procedure 100 times, where each permutation sample contains the same number of

treated and control firms we have in our actual estimation sample.

Results are shown in Figure E.7: each gray line presents a set of placebo (dynamic)

treatment estimates, whereas the black line presents our actual treatment estimates. The

69Also see Kennedy (1995) for an overview and Young (2018) for a recent application and

evaluation of the value of these tests.
70Note that this permutates both the assignment of treatment to firms, and their timing

across years, since both are part of our empirical procedure.
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graph also shows probability values calculated using the rank of the absolute value of our

estimated coe�cient among the 100 permutated estimates.71 This shows that something

at least as extreme as our treatment estimate is unlikely to occur by chance, increasing

confidence that our estimates are not a statistical false positive.

Figure E.7. Randomization test
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Notes: 100 permutations. The numbers printed at the bottom of the graph
are probability values for the treatment estimates, based on the randomiza-
tion test.

71Results are very similar when using t-statistics rather than coe�cient estimates to

calculate probability values.
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F Computer investments

Table F.1 shows the distribution of automation costs and computer investment across

firms and years, highlighting automation costs are higher than computer investments.

Tables F.3 and F.4 compare automation and computer investments per worker across

firms by sector and firm size. As expected, Information and communication has the

highest computer investment per worker, followed by Professional, scientific & technical

activities. Accomodation & food serving and Construction have the lowest computer

investment per worker. When considering the relative importance of automation and

computer technology, Manufacturing is the most automation-intense compared to other

sectors, whereas Information & communication is the most computer-intense. Like for

automation, we generally see higher computer investment per worker for larger than

smaller firms, but the pattern is less dramatic.

Table F.2 shows the distribution of computer investment spikes: while more firms have

computer investment spikes than automation spikes, Figure F.1 shows that computer

investment spikes are also characterized by a large one-time increase in investment.
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Table F.1. Automation costs and computer investments distributions

Automation cost Computer investment

level per worker level per worker

p5 0 0 0 0
p10 0 0 0 0
p25 0 0 0 0
p50 18,285 324 6,046 108
p75 75,758 1,043 33,892 488
p90 263,129 2,373 123,000 1,229
p95 620,724 3,839 273,263 2,039
mean 271,884 1,125 109,390 615
mean excl. zeros 377,959 1,564 170,810 960
N firms ◊ years 171,878 171,878
N firms ◊ years with 0 costs 48,238 61,804

Notes: All numbers are in 2015 euros. The number of observations is the number of
firms times the number of years.

Table F.2. Automation and computerization events

Percentage of firms with event type:

Nr of spikes Automation Computerization
0 71.9 47.9
1 22.5 41.9
2 4.8 9.1
3 0.7 1.1
4 or 5 0.1 0.1

Notes: Overlapping sample of firms, N = 25,118.
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Table F.3. Automation costs and computer investments by sector

Autom. cost Comp. inv. Ratio autom. Nr of obs

Sector per worker per worker to comp. Firms Firms ◊ yrs

Manufacturing 1,088 403 2.70 5,191 40,887
Construction 543 234 2.32 2,814 18,248
Wholesale & retail trade 1,257 594 2.12 7,230 50,471
Transportation & storage 999 496 2.01 2,283 15,868
Accommodation & food serving 279 165 1.69 742 4,462
Information & communication 2,214 2,713 0.82 1,563 9,762
Prof’l, scientific, & technical activities 1,381 844 1.64 2,376 14,830
Administrative & support activities 941 423 2.22 2,919 17,350

Notes: Overlapping sample, total number of firms is 25,118.

Table F.4. Automation costs and computer investments by firm size

Autom. cost Comp. inv. Ratio autom. Nr of obs

Firm size per worker per worker to comp. Firms Firms ◊ yrs

1–19 employees 2,433 1,193 2.04 2,260 11,352
20–49 employees 928 593 1.56 10,459 66,448
50–99 employees 914 497 1.84 5,873 41,560
100–199 employees 1,029 572 1.80 3,430 26,529
200–499 employees 1,314 621 2.12 1,929 16,218
Ø500 employees 1,794 695 2.58 1,167 9,771

Notes: Overlapping sample, total number of firms is 25,118.
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Figure F.1. Computer investment per worker around computerization events

0
50

0
10

00
15

00
20

00
25

00
C

om
pu

te
r i

nv
es

tm
en

t p
er

 w
or

ke
r, 

re
al

 e
ur

os

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16
Time relative to computerization event

Notes: Overlapping sample of firms with a computerization event. N =
13, 079 in event year.

58


	Introduction
	Data
	Administrative data on workers and firms
	Automation costs
	What do automation costs capture?

	Automation events
	Defining automation events
	Summary statistics of automation events

	Firm-level analyses
	Comparing automating to non-automating firms
	Difference-in-differences only using automating firms

	The impact of automation on individual workers
	Difference-in-differences event-study design
	What happens to workers at firms that automate?
	Annual wage income, firm separation, non-employment, and daily wages
	Annual benefit income, early retirement, and self-employment

	Effect heterogeneity
	Robustness tests

	Automation versus computerization events
	Conclusion
	Data
	Automation costs over time
	Correlations between automation costs and specific technologies
	Technology usage by sector
	Automation imports

	Theoretical model of firm-level automation spikes
	Exogenous automation
	Consumption
	Production
	Conditional factor demands
	Output as a Cobb-Douglas aggregate
	Unconditional labor demand
	Output
	Profits

	Endogenous automation
	Expected profits
	Technological progress
	Spikes in automation expenditures
	Shocks to product demand

	Empirical implications

	Automation events
	Automation spike frequency
	Automation events across sectors and firm size classes
	Automation and total costs around automation events

	Firm-level analyses
	Predicting automation events
	Employment growth for automating and non-automating firms: balanced panel
	Difference-in-differences with non-automating firms
	Comparison to import-based automation measure

	Worker-level analyses
	Sample construction
	Summary statistics for workers
	Predicting automation event timing
	Effects on hourly wages
	Effect heterogeneity
	Incumbent workers versus recent hires
	Robustness tests
	Constructing placebo events
	Robustness to other firm events and placebo events
	Alternative definitions of automation events
	Changes in model specification
	Randomization test


	Computer investments

