
What Happens to Workers at Firms that Automate?∗

James Bessen
Boston University

Maarten Goos
Utrecht University

Anna Salomons
Utrecht University

Wiljan van den Berge
Utrecht University

November 2022

Abstract

We estimate the impact of firm-level automation on individual worker outcomes
by combining Dutch micro-data with a direct measure of automation expenditures
covering all private non-financial sector firms. Using a novel difference-in-differences
event-study design leveraging lumpy investment, we find that automation increases
the probability of incumbent workers separating from their employers. Workers
experience a 5-year cumulative wage income loss of 9 percent of one year’s earnings,
driven by decreases in days worked. These adverse impacts of automation are larger
in smaller firms, and for older and middle-educated workers. By contrast, no such
losses are found for firms’ investments in computers.

Keywords: Firm-level automation, Worker displacement

JEL: D24, J23, J62, O33

∗Helpful comments by Daron Acemoglu, David Autor, Peter Blair, Brian Jacob, Egbert
Jongen, Guy Michaels, Pascual Restrepo, Robert Seamans, Bas van der Klaauw, three
anonymous reviewers, and participants of seminars and conferences at ASSA 2020 annual
meeting, CPB, the European Central Bank, Erasmus University Rotterdam, Groningen
University, IZA, Maastricht University, NBER Productivity Lunch, NBER Summer Insti-
tute, TASKS V Bonn, Tinbergen Institute, Utrecht School of Economics, and University
of Sussex are gratefully acknowledged. We are grateful to Pascual Restrepo for providing
us with automation-related product codes for imports. James Bessen thanks Google.org
for financial support. Goos, Salomons, and Van den Berge thank Instituut Gak for finan-
cial support.

1



1 Introduction

Advancing technologies are increasingly able to fully or partially automate job tasks.

These technologies range from robotics to machine learning and other forms of artificial

intelligence, and are being adopted across many sectors of the economy. Applications

include selecting job applicants for interviews, picking orders in a warehouse, interpret-

ing X-rays to diagnose disease, and automated customer service. These developments

have raised concerns that many workers are being displaced because their firms adopt

automation technology (Eurobarometer 2017; Pew 2017).

An emerging literature studies firms adopting automation technology. The litera-

ture focuses predominantly on robotics or other manufacturing technology, and measures

adoption through imports, surveys, or electricity usage (Doms et al., 1997; Dunne and

Troske, 2005; Dinlersoz and Wolf, 2018; Cheng et al., 2019; Dixon et al., 2019; Koch

et al., 2021; Acemoglu et al., 2020; Aghion et al., 2020; Humlum, 2021; Bonfiglioli et al.,

2021; Hirvonen et al., 2021).1 Compared to non-adopters, firms adopting automation

technology are generally found to experience faster employment, revenue, and productiv-

ity growth, and either declining or stable labor shares. However, Bonfiglioli et al. (2021)

find that, when accounting for firm-level product demand shocks that generate a positive

correlation between robot imports and employment, exogenous exposure to automation

imports leads to a decline in firm-level employment.

There are as yet no empirical studies that directly examine what happens to individual

workers when their firm decides to automate.2 However, studying this adjustment process

1A related literature studies aggregate adoption of robotics, using industry and/or re-

gional variation (Graetz and Michaels, 2018; Aghion et al., 2019; Dauth et al., 2021;

Acemoglu and Restrepo, 2020).
2An exception is Humlum (2021) who finds that a firm’s wage bill declines for production

workers and increases for tech workers after automation. Other related studies on worker

adjustments have used more aggregate sources of variation and do not always focus on

causal effects. In particular, Cortes (2016) finds that workers switching out of routine-

intense occupations experience faster wage growth relative to those who stay; Dauth
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is critical to our understanding of how labor markets are impacted by the automation

of work. While the theoretical literature models automation as displacing humans from

certain tasks (see Acemoglu and Restrepo 2018), this need not translate to worker-level

displacement if productivity increases are sufficiently strong. Further, firm- and sector-

level impacts do not inform about the adjustment process that workers go through: even

positive aggregate changes may be accompanied by worker churn (including across firms

within sectors) and economic consequences for individual workers directly affected by

automation. Any such adjustments are also of first-order importance for policymakers

aiming to diminish adverse impacts out of distributional concerns.

In studying the impacts of firms’ automation activity on individual workers, our paper

makes three contributions to the literature. First, we measure automation at the firm-

level across all private non-financial sectors. We use data from an annual Dutch firm

survey on automation costs. These automation costs refer to an official bookkeeping

entry on firms’ profit and loss account, and are defined as expenditures on third-party

automation services provided by specialist integrators across a wide range of automation

technologies. This means our measure complements the literature which has so far focused

on the adoption of machinery (and particularly robots) by manufacturing firms.

Second, we develop a novel empirical approach based on evidence that firms’ au-

tomation expenditures occur in discrete episodes of lumpy investment. In particular, we

leverage spikes in automation cost shares to define automation events. We exploit the

timing of these events in a difference-in-differences event-study methodology for iden-

tifying causal effects on firms’ incumbent workers. This approach is made possible by

the relatively high frequency of automation events in our data. The advantage of this

approach is that it allows for more credible identification of worker-level effects: this is

important because the literature has shown that automating and non-automating firms

are on different employment trends, a finding we replicate in our data.

et al. (2021) correlate regional variation in robot exposure with worker outcomes; while

Edin et al. (2019) show that workers have worse labor market outcomes when their

occupation is experiencing long-term decline.
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Third, by linking our annual firm survey to administrative firm and worker data, we

can follow individual workers over time and measure a rich set of outcomes for workers

in the years surrounding an automation event. These outcomes include annual wage

income, daily wages, firm separation, days spent in non-employment, self-employment,

early retirement, unemployment benefits, and welfare receipts. To our knowledge, our

paper provides the first estimates of the impacts of firm-level automation on these out-

comes. Our data cover the years 2000–2016 and we observe 35,580 firms, employing close

to 5 million unique workers per year on average.

We find that automation at the firm increases the probability of incumbent workers

(with at least three years of firm tenure) separating from their employer. On average,

these workers experience a 5-year cumulative wage income loss of 9% of an annual wage.

These losses are driven by increases in non-employment: we do not find evidence of wage

scarring on average for workers impacted by automation. Lost wage earnings from non-

employment spells are only partially offset by various benefits systems and workers are

more likely to enter early retirement. Turning to effect heterogeneity, we find that these

adverse impacts from automation are larger in smaller firms and for older and middle-

educated workers. Finally, we show that, unlike firm investments in automation, firm

investments in computers do not result in displacement effects.

This paper is structured as follows. In section 2, we introduce our data, and com-

pare our measure of automation costs to other measures of firm-level technology use.

Section 3 explains how the lumpiness of firms’ automation expenditures is used to iden-

tify automation events, and documents these events in our data. Section 4 analyzes the

relationship between automation and firm-level employment and wage outcomes. Sec-

tion 5 reports our main results on the effects of automation on worker-level outcomes

using our difference-in-differences event-study design. In section 6 we directly compare

the worker-level impacts of automation to those of computerization. The final section

concludes.
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2 Data

2.1 Administrative data on workers and firms

We use Dutch data provided by Statistics Netherlands. In particular, we link an annual

firm survey to administrative firm and worker databases covering the universe of firms

and workers in the Netherlands. The firm survey is called “Production Statistics” and

includes a direct question on automation costs – it covers all non-financial private firms

with more than 50 employees, and samples a subset of smaller non-financial private firms.3

This survey can be matched to administrative company and worker records.

Our data cover the years 2000–2016, and we retain 35,580 unique firms with at least

3 years of automation cost data – together, these firms employ around 5 million unique

workers annually on average. We use a worker’s total annual gross earnings in all jobs as

the main measure of wage income. Since we observe the number of days but not hours

worked per year, we use daily wages as a measure of wage rates. We remove firms where

Statistics Netherlands indicate that the data are (partly) imputed. We further remove

workers enrolled in full-time studies, and those earning either less than 5,000 euros per

year or less than 10 euros per day, as well as workers earning more than half a million

euros per year or more than 2,000 euros on average per day. For workers observed in

multiple jobs simultaneously, we only retain the job providing the main source of income

in each year when matching workers to firms.

We further observe workers’ gender, age, and nationality. A downside to these data

is that we do not observe workers’ occupations, and only have information on the level

of education for a small and selected subset of workers (with availability skewed toward

younger and high-educated workers). We further match worker-level data to administra-

tive records on receipts from unemployment, welfare, disability, and retirement benefits.

3Firms are legally obliged to respond to the survey when sampled. However, the sampling

design implies our data underrepresent smaller firms: we also examine effect hetero-

geneity across firm size classes to consider how this sample selection affects our overall

findings.
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We can track workers across firms on a daily basis, allowing us to construct indicators

for firm separation and days spent in non-employment.

2.2 Automation costs

An important advantage of our data is the availability of a direct measure of automation at

the firm level. In particular, automation costs are an official bookkeeping entry defined as

expenditures on third-party automation services. While the disadvantage of this measure

is that we do not know the exact automation technology being used by the firm, it

does capture all automation technologies rather than focusing on a single one. Further,

we measure it at the level of the firm rather than the industry, and across all private

non-financial sectors.

Table 1 shows summary statistics on annual automation costs for firms, both in levels,

per worker, and as a percentage of total costs (excluding automation costs). This high-

lights several things. First, almost one-third of firm-year observations has zero automa-

tion expenditures. Second, the average automation cost share is 0.44%, corresponding

to an outlay of around 211,000 euros annually, or 1,045 euros per worker. Third, this

distribution is highly right-skewed as the median is only 0.16% – this skewness persists

even when removing observations with zero automation costs.

The top panel of Table 2 further shows how these automation costs and cost shares

differ by broad (one-digit) sector. Our comprehensive measure of automation technolo-

gies indicates that all sectors have automation expenditures, though there is substantial

variation at the firm level both between and within each of these sectors. Average ex-

penditures at the sectoral level range from 244 to 1,789 euros per worker. The highest

mean automation expenditures per worker are observed in Information & communica-

tion, followed by Professional, scientific & technical activities, Wholesale & retail, and

Manufacturing. Conversely, Accommodation & food serving has the lowest expenditure

per worker, followed by Construction, Administrative & support activities, and Trans-

portation & storage. However, there is much variation between firms in the same sector,

as shown by the standard deviations of the automation cost share in total (other) costs.
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While we do not use either this sectoral or between-firm variation in our empirical iden-

tification strategy, we will consider effect heterogeneity across sectors since the nature of

automation technologies may be sector-specific.

Table 2 also reports the same statistics but separately by firm size class, grouped

into 6 classes used by Statistics Netherlands: the smallest firms have up to 19 employees

whereas the largest have more than 500. Unsurprisingly, automation cost levels rise with

firm size: firms with fewer than 20 employees spend around 12,000 euros annually on

automation services, whereas the largest firms spend close to 3.2 million euros. Less

obviously, this table also reveals that automation cost shares increase with firm size,

particularly at the very top: the smallest firms have average automation cost shares of

around 0.41%, whereas firms with between 100 to 200 employees have a cost share of

0.44%. This increases to 0.51% for firms between 200 and 500 workers, and 0.76% for

firms with more than 500 workers. This is consistent with the literature’s findings that

more productive and therefore larger firms are more likely to automate. However, there

is substantial variation within size classes, also.4

2.3 What do automation costs capture?

Since our automation cost measure does not specify the automation technology being

implemented, we compare firm-level automation costs with other, specific, technologies

obtained from a firm-level survey provided by Statistics Netherlands. These measures

are self-reported indicators (unlike automation costs, which are part of firms’ official

bookkeeping), and the questions differ by survey year.5

We obtain correlations between firms’ (standardized) automation cost shares and their

self-reported implementation with self- or externally developed process, product, and

4Appendix A.1 further illustrates how the distribution of automation cost expenditures

per worker and automation cost shares change over time. It shows that both the means

and variances of automation costs per worker and automation cost shares have increased

over time.
5We take firms’ most recent reported technology use.
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organizational innovations (all three measured as dummies), controlling for sector fixed

effects and firm size.6 Automation cost shares are positively correlated with all three self-

reported innovation types, indicating that automating firms are more innovative across

the board. However, the coefficient for process innovation is more than twice as large as

those for product and organizational innovations, highlighting that this innovation margin

is differentially more important for firms with high automation cost shares. Firms with

a one standard deviation higher automation cost share are 20.5 percentage points more

likely to report implementing process innovations. This suggests that automation cost

shares differentially measure process automation technology rather than innovations more

broadly.

We also estimate the same models for a host of self-reported uses of specific technolo-

gies, all of which are given as dummy variables in the data.7 First of all, this shows that

automation cost shares are positively associated with the general indicator of using elec-

tronic data suited to automated processing. Automation cost shares are also positively

correlated with several well-known technologies, such as Customer Relationship Man-

agement (CRM) software used for inventory and distribution and Enterprise Resource

Planning software. Further, value chain integration itself is not predictive of automation

cost shares, but the use of automated records in such integration is.

Further, automation cost shares are correlated with the use of big data analysis, and

with the use of cloud services for both customer management and accounting and financial

management. Firms with high automation cost shares are more likely to receive their

own orders through Electronic Data Interchange (EDI) but less likely to order through

EDI at other firms– the latter would of course require these trading partners to have EDI

technology. Finally, automation cost shares are higher for firms using sales software.

Importantly, not all technologies are associated with firms’ automation cost shares:

the use of radio-frequency identification, Local Area Networks, or using internet for finan-

cial transactions or worker training are not predictive of a firm’s automation cost share.

6Results are reported in Appendix Table A.1.
7Results are reported in Appendix Table A.2.
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These results can be seen as a type of placebo result, since we would not expect these

specific technologies to be associated with substantial automation at the firm. All in all,

these descriptives show that firms’ automation costs are most strongly related to process

innovations, and meaningfully associated with the usage of various specific technologies,

particularly those which make use of electronic data suited to automated processing.8

Another measure of firm-level technology adoption used in the literature are firm

imports of robots and other automating technologies. We compare this to our automa-

tion cost measure by leveraging data on automation imports, which are available from

2010 onward.9 Automation imports are defined as imports of intermediates classified by

Acemoglu and Restrepo (2021) as automatically controlled machines, automatic transfer

machines, automatic welding machines, numerically controlled machines, and (other) in-

dustrial robots. We find that average automation expenditures are substantially higher

than average automation imports since few firms are importers, and that automation

costs are observed across a wide range of sectors whereas automation imports are largely

limited to firms in Manufacturing, Wholesale & retail, and Transportation & storage.

Automation imports and automation expenditures are correlated between, but not

within firms: that is, firms are not more likely to have higher automation costs when

they (net) import more automation technology. This comparison shows that the firm-level

import measures used in the literature likely capture a different dimension of technology

adoption. One reason could be that our measure of automation costs captures that the

firm relies on an integrator to install the machinery whereas in the case of automation

imports the firm is purchasing the automation machinery directly. However, a limitation

8Appendix A.3 further reports the sectoral prevalence of the technologies which are sig-

nificantly positively correlated with automation cost shares: this gives insight into which

specific automation technologies are being used in these industries. The main finding is

that different sectors do implement these technologies at different rates, but the overall

use of data for automated processing is relatively common in all sectors, reflecting a

general characteristic of automation.
9Results are reported in Appendix A.4.
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to our comparison is that Dutch firms also export automation technology at high rates—

in fact, the Netherlands is a net exporter of automation technology. This could indicate

that, in the Netherlands, firm-level automation imports need not correspond to actual

deployment of the imported technology within the firm.

3 Automation events

3.1 Defining automation events

We identify automation events using what we call automation spikes. We define an

automation spike as follows. Firm j has an automation cost spike in year τ if its real

automation costs ACjτ relative to real total operating costs (excluding automation costs)

averaged across all years t, TCj, are at least thrice the average firm-level cost share

excluding year τ :

spikejτ = 1

ACjτTCj

≥ 3× 1
T − 1

T∑
t6=τ

(
ACjt

TCj

) (1)

where 1{. . .} denotes the indicator function. As such, a firm that has automation costs

around one percent of all other operating costs for year t 6= τ will be classified as having

an automation spike in t = τ if its automation costs in τ exceed three percent of average

operating costs over years t. Finally, we define an automation event as the year when the

firm has its first increase in automation cost share that qualifies as a spike.10,11

10Firms without an automation event do not necessarily have zero automation costs, but

their automation expenditures do not vary much relative to total costs, implying they

do not undergo automation events as we define them. Firms without such events do

have lower automation costs also on average, however.
11Note that automation costs capture the use of third-party automation services: this

raises the question whether these events capture outsourcing at the firm-level. How-

ever, for outsourcing, we would expect to see a sustained increase of costs for the firm

(reflecting a flow of wages to these outsourced workers) rather than a temporary spike.
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We develop a theoretical model to show that the existence of automation events is con-

sistent with monopolistic competition between profit-maximizing firms that choose their

optimal timing to incur a firm-specific fixed cost of automation.12 Assuming technological

progress such that a firm’s technology ages and its relative output price increases if it

does not automate, the model predicts spikes in automation cost shares, i.e. a one-period

increase in automation expenditures relative to other costs preceded and followed by pe-

riods in which the firm does not automate. Moreover, firms will automate at different

points in time if they have different fixed costs of automation.

3.2 Summary statistics of automation events

Out of the total number of 35,580 firms with at least 3 years of automation cost data,

there are 10,425 firms that have at least one spike in their automation cost share between

2000 and 2016.13 That is, 29% of the firms in our sample spike at least once over the 17

years of observation.14 Out of the firms that have at least one automation cost spike, the

large majority spikes only once over 2000–2016, although some spike twice and up to five

times at most.

Figure 1 shows the evolution of automation costs shares around automation events.

This is constructed by redefining time τ as event time: the difference between the actual

calendar year and the calendar year of the spike, such that all automation events line up

in τ = 0. Figure 1 uses the sample of 10,425 firms, showing a clear one-period increase

12This model is related to Bonfiglioli et al. (2021) and Humlum (2021) and extends

task-based frameworks of automation in Acemoglu and Restrepo (2018, 2019) by en-

dogenizing firm-level automation as a lumpy investment following Haltiwanger et al.

(1999). It is provided in Appendix B.
13Shown in Appendix Table C.1.
14We also find that this percentage varies relatively little across sectors (ranging from

25% in Construction to 39% in Information & communication) and firm sizes, although

the smallest firms are least likely to have automation events. See Appendix C.2 for

details.
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in the automation cost share when a firm has its automation event.15

We also assess the ‘lumpiness’ of automation costs. We find that while only 5% of

firm-year observations are automation spikes, these make up 11% of total investment

in automation across all firms that we observe at least three times in the automation

cost data. Further, among firms that have an automation cost spike, on average 54%

of all observed automation costs occurs during such spikes (with a median of 52%): if

automation costs were evenly distributed within firms over time, any one year would only

correspond to 13% of the total outlay. This suggests that while firms also have outlays

on automation that do not fall within our strict automation event definition, automation

costs are lumpy.

4 Firm-level analyses

Following the recent literature examining changes in firm-level outcomes from firm-level

automation that was summarized in the introduction, this section briefly discusses how

our automation events correlate with firm-level outcomes, in particular firm-level employ-

ment and the firm’s average daily wage. Section 4.1 compares firms with an automation

event to firms without an automation event, showing that these firms are on substan-

tially different labor demand trajectories. Section 4.2 therefore presents an analysis of

the impacts of automation only using the sample of firms with an automation event.

4.1 Comparing automating to non-automating firms

We first ask how firms with an automation event differ from those without an automation

event: as outcomes, we consider growth in firm-level employment and in the firm’s average

daily wage. In particular, we estimate variants of the following model:

∆ ln Yjt = β × Aj +Dt + γ ×Xj + εjt, (2)

15Appendix C.3 shows this increase is driven by automation costs rising, not total costs

decreasing.
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where the dependent variables are annual log changes in employment, in the average

daily wage, and in the wage bill for firm j in calendar year t. Aj is a dummy for the firm

having an automation event over the 2000–2016 period, Dt are calendar year fixed effects,

and Xj additional controls consisting of two-digit sector dummies and baseline firm-level

characteristics.16 The term εjt is an error term and standard errors are clustered at the

firm-level. The coefficient of interest, β, tells us whether automating firms experience

different employment, mean daily wage, and wage bill trajectories.

Table 3 shows that automating firms have 1.5 to 1.9% higher employment growth

but not higher daily wage growth compared to non-automating firms. Automating firms’

wage bills therefore grow faster compared to non-automating firms– Dunne and Troske

(2005) find similar patterns for U.S. manufacturing firms that are adopting information

technology. In Bessen et al. (2020), we show that these associations are not significantly

different for manufacturing firms compared to non-manufacturing ones. In sum, these

results show that, on average, automating firms have faster employment growth17 but

not faster wage growth.18

4.2 Difference-in-differences only using automating firms

The employment growth for automating firms relative to non-automating ones does not

rule out that automation at the firm level can be labor-saving when it occurs; such

labor-saving effects would matter for individual workers employed in these automating

16Appendix D.1 estimates a linear probability model where the dependent variable is a

dummy for the firm having an automation event over 2000–2016, showing that larger

firms and firms paying higher wages are more likely to automate. We include initial-year

values for these variables as additional controls to capture convergence dynamics.
17Appendix D.2 shows similar results when using a balanced panel of firms.
18Appendix D.4 shows that similar effects are found for importers of automation tech-

nology compared to non-importers, although the employment growth and wage bill

differences are more than twice as large, reflecting that automation importers are much

more positively selected.
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firms. We therefore also consider the evolution of firm outcomes around an automation

event, looking at the sub-sample of automating firms only and exploiting the timing of

automation events for identification.

We set up our data in a stacked difference-in-differences design as in e.g. Cengiz

et al. (2019).19 More specifically, we create separate datasets for each cohort of firms

that have their first automation event in year c, with c ∈ {2003, .., 2011}. As before,

τ is event time, i.e. calendar year t minus the calendar year c in which the firm has

an automation event (τ ≡ t − c). In each dataset we keep τ ∈ {−3, .., 4} as our event

window. Then for each dataset, we add observations for the same calendar years on all

firms that have an automation event in year c + 5 or later as controls. For example,

our first cohort of treated firms are firms that have their first automation event in 2003.

The event window surrounding this event contains the calendar years from 2000 to 2007.

All control firms for the 2003-cohort are those firms that we observe over the same event

window (2000 to 2007), and that have their first automation event later than 2007. These

firms are “clean controls” in the sense that they do not have an automation event during

the event window. We repeat this procedure for each cohort of firms. Finally, we stack

the cohort-specific datasets so that they line up in terms of event time τ ∈ {−3, .., 4}.20

The by now well-documented problems related to two-way fixed effects in an event-

study design arise from staggered treatment timing (de Chaisemartin and D’Haultfoeuille,

2020; Sun and Abraham, 2021; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020).

By creating a balanced panel in event time, we have effectively eliminated the staggered

timing in the data, and hence do not suffer from the issues that staggered timing may

create. Most notably, we do not use “already-treated” units as control units. Baker et al.

(2021) show that a stacked difference-in-differences setup recovers the true treatment

19For other recent papers using this setup, see for example Goldschmidt and Schmieder

(2017); Deshpande and Li (2019); Clemens and Strain (2021); Baker et al. (2021).
20To ensure that our results are not driven by selective survival of firms, we also ensure

that our treatment firms survive until at least 5 years after the automation event. This

does not affect our results.
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effects in the case of staggered timing, just as the Callaway and Sant’Anna (2020) and

Sun and Abraham (2021) approaches do.

Using this stacked dataset, we estimate the following difference-in-differences specifi-

cation:

ln Yjt = α +
4∑

τ 6=−1;τ=−3
βτ × Iτ +

4∑
τ 6=−1;τ=−3

δτ × Iτ × treatj + ηj + θt + εjt, (3)

where j indexes firms by cohort.21 It are leads and lags in event time, with τ = −1 as the

reference category. Treatment is indicated by the dummy variable treatj which turns on

for firms that have an automation event in the window. Yjt is j’s employment or average

daily wage and ηj are a set of cohort by firm fixed effects22 and θt a set of calendar year

fixed effects.23

We require two assumptions for a causal interpretation of δτ (e.g. Callaway and

Sant’Anna, 2020; Borusyak et al., 2021).24 First, we need that treated and control firms

follow parallel trends in absence of treatment. We provide evidence for this assumption

by showing that pre-event trends are mostly similar for firms that have an automation

event now compared to those that have an automation event later. In addition, as we

saw above, firms that do not have an automation event are on different trends than firms

that do have an automation event. By relying only on differences in event timing, rather

than also on event incidence, we can be more confident that we are comparing firms on

similar trends.25 Second, we need that firms do not anticipate an automation event, i.e.

there should not be an effect of treatment in the future on current outcomes (e.g. Ab-

21This is because individual firms can appear multiple times in the stacked data.
22We account for the fact that control firms can appear multiple times in the stacked

dataset by including cohort by firm fixed effects (Baker et al., 2021).
23Adding a full set of cohort by year fixed effects does not affect our findings.
24Also see Appendix B for a more formal discussion in the context of our theoretical

model.
25Appendix D.3 shows results using non-automating firms as control group: we find

diverging pre-trends in employment in this comparison. This is consistent with the
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bring and Van Den Berg, 2003). This “no-anticipation” assumption is more difficult to

maintain at the firm than worker level, because firms that decide to automate are more

able to anticipate their own decision and this might affect other decisions they make in

anticipation of the automation event. For this reason we will interpret these firm-level

results as descriptive.

Results are shown in Figure 2 for two groups of firms: those with fewer than 500

workers, and firms with 500 workers or more (where firm size is determined at τ = −1).

First, we find that in firms with fewer than 500 workers, employment contracts following

an automation event by about 20% compared to firms that have an automation event

later. In contrast to employment, daily wages remain stable around these events. In the

largest firms, wages actually grow by about 5% relative to the control group, but there is

no significant change in employment. All in all, wage bills fall after the automation event

in the smaller but not the larger firms. Bessen et al. (2020) show that while these effects

are quantitatively larger (albeit more imprecisely estimated) in manufacturing firms, they

are observed in non-manufacturing firms as well.

We also find that employment, wage, and wage bill trajectories for the subsample

of automation importers are similar to those of the largest firms in Figure 2, with even

more sizable positive impacts.26 This is because there is a strong positive correlation

between being an importer of automation technology and firm size27, suggesting that

using imports to measure automation involves important selection effects, as also argued

by Bonfiglioli et al. (2021). Our main analyses, by contrast, rely on our measures of

automation costs that are observed across different firm sizes.

evidence presented in section 4.1 and suggests that non-automating firms are not a

good control group for automating firms in our case.
26See Appendix D.4 for details.
27Firms with automation cost spikes employ around 8.5% more workers than do firms

without such spikes; by contrast, firms with automation imports are 131% larger than

non-importers.
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5 The impact of automation on individual workers

This section presents our main results: the impact of firm-level automation on individual

workers. Section 5.1 outlines our difference-in-differences event-study design for identi-

fication of causal effects. In section 5.2 we present main results. Section 5.3 discusses

effect heterogeneity, and in section 5.4 we present robustness tests.

5.1 Difference-in-differences event-study design

For the worker-level analysis we exploit our linked employer-employee data and follow

a similar stacked difference-in-differences setup as in our firm-level analysis. Again, we

create separate datasets for each cohort of firms that have an automation event in year

c. We subsequently merge all workers who are employed at this firm in c − 1. These

are our sets of treated workers. Similar to the firm-level analysis, we keep observations

for these workers over the event window τ ∈ {−3, .., 4}, with τ defined as event time

(τ ≡ t − c). Then, for each cohort c and the same set of calendar years, we add all

workers employed in c− 1 at firms that have their first automation event in year c+ 5 or

later as control workers. For example, we observe the cohort of workers treated in 2005

over the event window 2002 to 2009. We pick our control workers such that we observe

them over the same window from 2002 to 2009, and that in 2004 they are employed at a

firm that has an automation event later than 2009.28 We repeat this procedure for each

cohort c ∈ {2003, .., 2011} and stack the resulting datasets so that they line up in event

time. We restrict our baseline analysis to incumbent workers: those workers with at least

3 years of firm tenure in c− 1.29

28We only require control group workers to be at a firm j in year c − 1. Hence, control

group workers do not have to be employed at firm j when firm j actually automates in

year c+ 5 or later.
29Appendices E.1 and E.2 provide further details on sample construction and summary

statistics for workers.
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We use the following difference-in-differences specification:

Yijt = α + β × treati +
4∑

τ 6=−1;τ=−3
γτ × Iτ +

4∑
τ 6=−1;τ=−3

δτ × Iτ × treati + λXijt + εijt, (4)

where i indexes individuals by cohort, j firms by cohort, and τ ∈ {−3, .., 4} is event

time.30 Yijt is an individual-level outcome for worker i who must be employed at firm j

in τ ∈ {−3, ..,−1}. Firm j can be a treatment group firm if j has an automation event

in τ = 0, or can be a control group firm if it has an automation event in t+ 5 or later.

Turning to the right-hand side of equation (4), treati is a treatment indicator for

worker i if her firm j has an automation event at τ = 0. Further, It are event-time

indicators, with τ = −1 as the reference category. Lastly, Xijt are controls: these are

a set of worker (age and age squared, gender, and nationality) and firm (sector and

firm-level employment at τ = −1) characteristics as well as year fixed effects. In our

baseline specification, we replace β × treati with individual by cohort31 fixed effects

which also absorb the non-time varying controls in X (gender, nationality, firm sector

and employment at τ = −1).32 We cluster standard errors at the level where treatment

occurs: that is, all workers employed at the same firm in t− 1 are one cluster.33

In equation (4), the parameters of interest are δt for t ≥ 0: these estimate the period

t ≥ 0 treatment effect relative to pre-treatment period τ = −1 (given that I−1 is the

reference category). For example, if automation leads to an immediate decrease in wage

income that equals 1% of annual labor earnings in τ = −1, we have that δ0 = −0.01.

Similarly, if automation leads to an annual wage income loss in τ = 4 that equals 3% of

annual wage income in τ = −1, we have that δ4 = −0.03. The figures in the next section

30Index i is for an individual worker within a cohort c since individual workers can appear

multiple times in the data. The same holds for any firm j.
31We account for the fact that individual control workers can appear multiple times in

the stacked dataset by using cohort by individual fixed effects (Baker et al., 2021).
32Except when we estimate the hazard rate of a worker leaving the firm.
33Adding a full set of cohort by year fixed effects does not affect our findings.
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plot estimates of δτ for τ ∈ {−3, .., 4} for several worker-level outcomes: annual wage

earnings, the hazard rate of leaving the firm, annual days in non-employment, annual

benefit income, and the probability to retire early or to become self-employed.

Estimates of δτ can be interpreted as causal effects under the identifying assump-

tions of (i) parallel trends in the absence of automation events, and (ii) no anticipation

of the automation event by workers. Our empirical approach directly supports these

assumptions in several ways.

First, our specification strictly exploits differences in event timing rather than also

using event incidence for identification. Only exploiting event timing across automating

firms is important if firms without automation events are on different labor demand

trajectories, as we have shown in the previous section: the outcomes for workers employed

at firms without an automation event are not an appropriate counterfactual. Effectively,

we are matching workers on the firm-level outcome of having an automation event at

some point in time. Our use of timing differences across firms is in the spirit of a recent

literature exploiting event timing differences in other contexts (see e.g. Duggan et al.

2016; Fadlon and Nielsen 2021; Miller 2017; Lafortune et al. 2018).34

Second, our specification only considers incumbent workers, defined as those with at

least 3 years of firm tenure in τ = −1. On average across firms in our data, 64% of

workers are incumbents (where the median is 68%). This captures workers who have

a stable working relation with their firm.35 This is important because identification

requires that workers are not selected into the firm in anticipation of an automation

event occurring in the near future. In this respect our worker-level analysis differs most

clearly from the firm-level analysis: the no anticipation assumption is much more likely to

hold for incumbent workers who are in a stable working relationships with the firm. This

34In support of our approach, Appendix E.3 shows that the timing of automation events

cannot be easily predicted from observed firm-level characteristics in our data.
35Dutch labor law during almost our entire data period ensures temporary contracts are

of a maximum duration of 3 years, implying that workers with 3 years of tenure are

likely to have open-ended contracts.
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reasoning is similar to the focus on incumbent workers in the mass lay-off literature (e.g.

see Jacobson et al. 1993; Couch and Placzek 2010; Davis and Von Wachter 2011), where

such lay-off events are assumed not to be anticipated for the firms’ incumbent workers.

Third, we further strengthen the assumption of parallel trends by matching on worker

and firm observables to ensure that δτ = 0 for all τ < 0 (Azoulay et al. 2010). In our

baseline specification, we match treated and control group workers on pre-treatment

annual real wage income, separately by sector and calendar year. While the match is

exact for calendar year and sector, we use coarsened exact matching (CEM, see Iacus

et al. 2012; Blackwell et al. 2009) for pre-treatment income. To this end, we construct

separate strata for deciles of real wage income, as well as separate bins for the 99th

and 99.9th percentiles, in each of the three pre-treatment years τ = −3,−2,−1. We

then match treated workers to control group workers for each of these income bins, while

additionally requiring them to be observed in the same calendar year and work in the

same sector one year prior to treatment. We include calendar year and sector matching

to ensure we are not capturing sector-specific business cycle effects, or other unobserved

time-varying shocks affecting workers based on their original sector of employment. As

such, each treated worker is matched to a set of controls from the same calendar year

and sector and belongs to the same pre-treatment earnings bin.

Finally, parallel trends in the absence of treatment requires that the results we find

are not driven by concurrent events unrelated to automation. In section 5.4 below,

we therefore check the robustness of our results by eliminating firms with other events

occurring inside the event-window, including take-overs, acquisitions, firm splits, and

restructuring.

5.2 What happens to workers at firms that automate?

We now turn to our main findings. First, we discuss the impact of automation on in-

cumbents’ average annual wage income and its components: the probability to leave the

firm, days in non-employment, and daily wages conditional on being employed. We then

discuss the impact of automation on benefit income, on the probability to retire early,
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and on the probability to become self-employed.

5.2.1 Annual wage income, firm separation, non-employment, and daily wages

We begin by estimating the impact of firm-level automation on individual workers’ real

annual wage earnings, scaled by wage earnings levels in τ = −1 to obtain relative impacts.

These estimates of parameters δt in equation (4) are shown in panel (a) in Figure 3,

multiplied by 100 to capture percentage changes in annual real wage earnings relative to

their τ = −1 level.

The estimates highlight that incumbent workers lose wage income as a result of the

automation event. Indeed, the average incumbent worker loses about 1% of annual wage

earnings in τ = 0; 1.6% (of annual wage earnings in τ = −1) in τ = 1; 1.9% in τ = 2;

2.4% in τ = 3; and 2.4% in τ = 4. Overall, automation decreases annual wage earnings

for an incumbent worker by 9.3% (=1+1.6+1.9+2.4+2.4) cumulatively of her annual

wage earnings in τ = −1 after 5 years. Given that annual wage earnings grow by 1.6%

annually on average, this reflects a non-negligible loss compared to usual wage earnings

trajectories. In euros, this 9% annual earnings loss corresponds to a cumulative real

earnings loss of around 3,700 euros for the average incumbent worker over the 5 years

following her firm’s decision to automate.

These losses in annual earnings from work may be driven by changes in days worked

following firm separation, changes in daily wages if employed, or a combination of both.

To study the importance of firm separation, panel (b) in Figure 3 presents estimates

from equation (4) where the dependent variable is the worker’s hazard rate of separating

from her pre-treatment employer. All coefficients have been multiplied by 100, such that

the effects are in percentage points. The panel shows that automation leads to some

incumbent workers leaving the firm: after 5 years, incumbent workers at automating

firms have a statistically significant 1.7 percentage point higher hazard rate of firm exit.

This is a non-negligible increase, given that the corresponding hazard among control

group workers is 8.4%.

It is noteworthy that worker displacement does not occur instantly: rather, displace-
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ment effects arise over time. There are various (and non-mutually exclusive) possible

explanations for this. For one, these patterns are consistent with incumbent workers

having open-ended contracts, making it costly and time-consuming to fire them. Fur-

ther, these gradual changes could in part also result from a time delay in the effective

implementation of automation technologies and work process changes relative to the cost

outlay, or because it takes time for workers and firms to learn about changes to their

match quality under the new technology. Gradual displacement following an automation

event is in contrast to the well-documented phenomenon of mass lay-off events, where at

least 30% of the firm’s incumbent workforce is laid-off at once (see Davis and Von Wachter

(2011) for an overview).

Although our results so far show that automation leads to an increase in firm sepa-

ration, this need not translate to losses in annual wage income if displaced workers find

re-employment quickly (and at similar wage rates): we now turn to impacts on non-

employment. Results are shown in panel (c) in Figure 3, where we define the dependent

variable in equation (4) as the annual number of days spent in non-employment. Starting

in the automation event year (τ = 0), non-employed days for treated workers gradually

increase relative to control group workers. In particular, non-employment increases by

1 day in the automation event year (although this estimate is not statistically signifi-

cant), which increases to around 5.3 days annually after 5 years, with a total cumulative

increase in non-employment of around 18 days compared to the control group. By com-

parison, in the event year, matched control group incumbents spend around 11 days in

non-employment on average, suggesting automation produces an average increase of 9% in

non-employment days in the automation year itself. The cumulative five-year impact cor-

responds to a 12% average increase relative to the five-year cumulative non-employment

duration of 145 days experienced by control group incumbents.

We do not find strong evidence to support that automation affects incumbents’ wages

conditional on employment, as shown in the final panel of Figure 3. Recall that we do not

observe daily hours worked in our data: changes in daily wages can therefore result from
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changes in hourly wages and/or changes in daily hours worked.36 The absence of strong

daily wage effects implies that the decrease in annual wage income for incumbent workers

when their firm automates is largely driven by the observed rise in non-employment

spells. This absence of wage scarring effects is in contrast to displacement effects from

mass lay-offs or firm closures (Jacobson et al., 1993; Couch and Placzek, 2010; Davis and

Von Wachter, 2011), which have been found in the Netherlands as well.37

5.2.2 Annual benefit income, early retirement, and self-employment

Panel (a) in Figure 4 considers the impact of automation on incumbent workers’ real

annual benefit income (in euros), comprised of unemployment benefits, disability benefits,

and welfare payments. We find that incumbent workers receive more benefit income

following an automation event: after 5 years, the cumulative total amount received is 344

euros on average. Given that the average annual wage income loss cumulates to about

3,700 euros after 5 years (see above), this implies that less than 10% of the wage earnings

loss from automation is offset by benefit payments. This finding is comparable to that

for other worker displacement events, where typically only a small part of the average

negative impact on earnings is compensated by social security (Hardoy and Schøne 2014).

Panel (a) in Figure 4 further shows that all of the additional benefit payments arise

from unemployment insurance: this is expected, as unemployment benefit eligibility is

very high among workers with at least three years of firm tenure.38 Consistent with high

36As shown in Appendix E.4, we do not find statistically significant impacts on log hourly

wages for the subperiod where these are observed, suggesting our finding is not driven

by mismeasurement.
37See Deelen et al. (2018); Mooi-Reci and Ganzeboom (2015) who find evidence of sub-

stantial wage scarring after mass lay-offs in the Dutch context, using the same admin-

istrative data as we do here.
38From 2000 to 2015, eligible workers in the Netherlands were entitled to up to 38 months

of unemployment benefits following job loss. Since 2016, maximum eligibility is 24

months.
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unemployment benefit eligibility, we do not see any increase in welfare payments. Lastly,

the uptake of disability benefits is actually slightly decreasing for treated versus control

group workers over time.

Panel (b) in Figure 4 examines whether automation also has an effect on early retire-

ment, defined as the receipt of retirement benefits prior to reaching the legal retirement

age. In particular, 5 years after the automation event, treated incumbent workers are

0.7 percentage points more likely to be observed in early retirement. While this effect

might seem small in size, the average probability of early retirement among control-group

incumbents in τ = 4 is around 1.73%. As such, the treatment effect represents a 40%

increase in the incidence of early retirement. Besides early retirement, the figure also ex-

amines the possibility that displaced workers enter self-employment. We do not find any

effects there: estimates are very close to zero and statistically insignificant, highlighting

that self-employment is not a compensating income source.

5.3 Effect heterogeneity

First, we consider effect heterogeneity by incumbent worker characteristics: firm size,

worker age, and education level.39 We find substantial heterogeneity in the effects of firm-

level automation for incumbent workers employed in firms of different sizes, as measured

by their number of workers in τ = −1.

Annual treatment effects (averaged over the post-treatment period τ = 0 through

τ = 4) are reported for six firm size classes in panel A of Table 4. Several results emerge.

First, while the average incumbent worker experiences losses in earnings across firm size

classes, these losses are generally larger for smaller firms: in firms with up to 50 em-

ployees, workers lose around 3.2% earnings annually over the four years following the

automation event, whereas workers lose only 0.8 to 2.4% annually in larger firms. These

differences are only partly driven by differences in firm separation and non-employment:

automation leads to declining log daily wages (conditional on employment) for workers

in smaller but not larger firms. Overall, this is consistent with the firm-level analyses re-

39See Appendix E.5 for details.
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ported in Section 4.2, where we found stronger wage growth and no employment losses for

larger firms following automation events.40 Since losses are higher for workers at smaller

firms, we would probably find somewhat higher average wage losses from automation if

our data were more representative in terms of firm size. Theory highlights that effects on

incumbent workers are less negative in firms where productivity increases from automa-

tion are larger. Viewed through the lens of this model, our results are consistent with

larger firms more effectively substituting capital for labor. This could for example arise

if larger firms are better able to relocate workers across jobs within the firm.

Further, we find that workers aged 50 and older are most negatively affected by au-

tomation events, as shown in panel B of Table 4: differences with younger age groups are

statistically significant, implying all other groups experience smaller or even negligible

income losses. This is the result of older workers separating from the automating firm at

higher rates, and experiencing larger increases in non-employment duration. Unsurpris-

ingly (and not reported here), the early retirement effects we found are entirely driven by

the oldest age group. Taken together, older workers appear to face substantially higher

adjustment costs from automation than do younger workers.

Wage losses from automation also differ by workers’ education level. We only observe

education for a subset of workers, reducing statistical power. However, the estimates

show losses are highest for middle-educated workers, and lowest for high-educated work-

ers. This is consistent with a long literature which has documented that jobs that can at

present be automated are predominantly concentrated in the middle of the wage distri-

bution (see Acemoglu and Autor (2011) for an overview), although effects on aggregate

skill demand may largely play out between rather than within firms as automating firms

gain employment share (Doms et al., 1997; Dunne and Troske, 2005).41

40Appendix E.5 shows that effects for incumbent workers employed at firms which import

automation technology are very similar to the effects for larger firms.
41Appendix E.5 reports further effect heterogeneity results. We find a similar pattern as

for workers’ education level when using within-firm age-specific wage quartiles as our

skill measure.

25



We find that effects are quite pervasive across sectors: this suggests that displacement

effects are not limited to robotics or process innovations in manufacturing. However, as

we do not observe the specific technology being adopted or work process being changed,

our estimates—even within sectors—may capture an average across different automation

technologies which individually may have more positive or negative effects on workers.

Lastly, we compare our results for incumbent workers to estimates for recent hires,

defined as those with less than three years of firm tenure prior to the automation event.42

Unlike for incumbent workers, we find no income losses from automation for the average

recent hire. This could be because recent hires have built up less firm-specific human

capital, and therefore are more able to adapt to new job tasks either within the same

firm or when moving to a new employer. However, it may also be that recent hires do

not lose income because these workers are in part hired in anticipation of the automation

event – in this case their outcomes are endogenous to the event.

5.4 Robustness tests

Our estimates can be interpreted as causal effects only under the identifying assumption of

parallel trends in the absence of automation events and no anticipation of the automation

event. A simple falsification test for parallel trends is to see whether δτ = 0 for τ < 0, as

seems to be the case in Figures 3 and 4. To go further, we can additionally match workers

on their firms’ pre-treatment employment trends. This implies we now ensure that treated

and control workers are not only employed at firms that experience an automation event

at some point in time, but where pre-treatment employment growth is similar.

Another important concern is that automation events could coincide with other firm-

level events. Our data include administrative information on several other important

firm-level events, namely mergers, take-overs, acquisitions, firm splits, and restructuring.

As a second robustness check, we therefore eliminate firms that experience such events

anywhere in the event window. As a third robustness check, we remove outlier firms in

terms of employment changes (those experiencing an employment change exceeding 90

42See Appendix E.6 for details.
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percent in any one year), both in the event window and outside of it. The removal of these

outliers is intended to capture any firm-level events which are not formally documented

in our administrative records. Fourth, we remove firms where there was a new worker

among the firm’s top-decile annual wage income earners43 in the three years prior to

the automation event. This is intended to capture automation events coinciding with

managerial change, which may bring changes in personnel policy unrelated to automation.

For all these robustness checks, estimates are very similar, though effects are somewhat

smaller when eliminating firms with (suspected) management change: this suggests that

automation may sometimes be the result of a new manager changing business practices.

Overall, however, our findings are very robust, showing that firm-level events other than

automation are unlikely to be the driving force behind the worker impacts we find.44

As a further robustness check, we construct events for firm-level investments which we

expect to be neutral from the perspective of incumbent workers: spikes in “other material

fixed assets”. This is a residual category comprising items like furniture, shelving, silos,

containers, and pellets. It excludes buildings, land, means of transportation, machines,

communication equipment, and computers; as well as immaterial assets such as software

and licenses. We construct spikes in other material fixed assets analogously to automation

costs– these expenditures are also lumpy, allowing for the construction of spikes.45 We

estimate worker-level difference-in-differences models for the overlapping sample of firms

where where we observe both automation events and at least three years of data on

other fixed material assets. In contrast to automation events, events based on other

fixed material assets do not have any impact on firms’ incumbent workers.46 This shows

that the worker impacts we find for automation events are not a mechanical outcome of

43Conditional on this worker earning at least 150 euros a day, i.e. 40,000 euros a year.
44Appendix Figure E.4a in Appendix E.7.2 summarizes our estimates for relative annual

wage income for all four robustness checks pertaining to firm-level pre-trends and events.
45See Appendix E.7.1 for details.
46Results are shown in Appendix Figure E.4b.
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constructing firm-level events the way we do.47

6 Automation versus computerization events

We have found that automation displaces incumbent workers: this raises the question

whether this effect is specific to automation technologies or occurs with investment in

new technology more generally.

Statistics Netherlands conducts a separate and partially overlapping firm survey on

investments, including computer investments.48 This item is called ‘computers’ or ‘com-

puters and other hardware’ and consistently defined as follows: “All data-processing

electronic equipment insofar as they can be freely programmed by the user, including

all supporting appliances. Do not include software.”. All investment within the com-

pany counts towards the expenditures, also if the equipment is second-hand, leased or

rented, or produced within the company. It excludes investments in plants that are lo-

cated abroad or resulting from take-overs of other organizations whose operations are

continued without change.

We analyze the effects of computer investments in a similar way to that of automation

events, and directly contrast it to the impacts of automation in the part of the sample

where we have overlapping data. This serves two purposes. First, we can consider to

what extent spikes in automation costs have different effects on workers than spikes in

computer investment. Second, if automation cost expenditures and computer investments

are correlated at the firm level, we can remove firms which have computer investment

47Appendices E.7.3, E.7.4, and E.7.5 report results from three further robustness tests: 1)

using alternative definitions of automation events, including different spike thresholds,

2) changing the model specification, and 3) performing a randomization test. Also here,

we find that our results are robust.
48We only consider computer investments because investments in software and communi-

cation equipment are only observed from 2012 onward. In 2012, software investments

are of a similar magnitude as computer investments.
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spikes within our estimation window to rule out that our automation event is partially

capturing investment in computers. Conversely, we also estimate the effects of computer

investments in isolation, that is, excluding any events where automation events occur

within the estimation window.49

Automation costs are higher than computer investments across the distribution, both

in total and per worker50, though of course both can come with other unmeasured corre-

lated costs, such as software for computers, and machinery for automation. In order to

compare automation to computerization events, we construct computer investment spikes

in the same way we have for automation, but using computer investment per worker.51

We use the same threshold, assigning firms a computer investment spike if their computer

investment per worker exceeds three times their usual level.52 Compared to automation

spikes, computer investment spikes are more frequent. However, similar to automation

events, there is a clear one-period increase in computer investments per worker when a

firm has its computerization event: in the event year, treated firms spend around 2,500

euros per worker, compared to around 400 euros in the years before and after.

After restricting the overlapping sample further to firms that exist in all years in their

computerization event window (as we also did for automation events), we construct four

different datasets. First, we consider automation and computerization events in isolation,

identifying treated and control group workers for one type of event while ignoring the

49Throughout our analyses, we consider the overlapping sample of firms where we observe

both automation events and at least three years of computer investment data. This

means our dataset consists of 25,118 instead of 35,580 firms, and is more skewed towards

larger firms as these are most likely to be sampled in both surveys.
50As shown in Appendix F, along with further details of computer investments by sector

and firm size.
51We use computer investments per worker because, unlike automation expenditures,

computer investments are not part of total costs; and because total investments cannot

serve as a denominator because they are inconsistently defined over our sample period.
52The resulting distribution of computer investment spikes is reported in Appendix F.
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other. This allows us to estimate our difference-in-differences event-study for automation

and computerization separately. However, these two events are correlated across firms

over time: firms that have recently had one type of event are more likely to also experience

the other sometime soon, even in the same year. This implies any estimated impact of

automation may be contaminated by computerization, and vice versa. We therefore

construct two additional samples of events which occur in isolation: we only retain those

automation (computerization) events where there is no computerization (automation)

event occurring in the estimation window for either treated or control group firms. For

each of the four samples, we then estimate Equation (4) and report results in Figure 5.

This comparison leads to several findings. First and foremost, computerization does

not lead to wage earnings losses for incumbent workers: estimates are small and never sta-

tistically significant. This is in contrast to automation, which does lead to income losses

for the average incumbent worker. Our findings are robust to considering automation

events without concurrent computerization and vice versa. Consistent with these results,

we do not find any increase in firm separation or non-employment duration for workers

impacted by computerization. This means that automation is a more labor-displacing

force than computerization from the perspective of a firm’s incumbent workers. This

could be due to various factors, which we cannot disentangle here. First, computer tech-

nology could be less worker-displacing than automation overall because it more strongly

complements worker capabilities. Second, firms’ investments in computer technology may

be less displacing from workers’ perspective if these investments replace older vintages of

computers (and computerization events reflect replacement costs), as this technology has

already reached higher adoption levels. In that case, computerization effects reflect cap-

ital deepening, which, in contrast to automation, does not lead to worker displacement

(Acemoglu and Restrepo, 2018).
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7 Conclusion

We estimate the impacts of firms’ automation activities on individual workers, using

firm-level data on automation expenditures across all non-financial private sectors in

the Netherlands over 2000–2016. Leveraging a novel difference-in-differences event-study

design exploiting spikes in automation costs, we show that automation at the firm sig-

nificantly increases incumbent workers’ hazard of separating from their employers. This

finding of course does not imply that automation destroys jobs on net in automating

firms or in the economy as a whole. However, we show that automation can be disruptive

for firms’ incumbent workers, leading to job churn and non-negligible adjustment costs.

Specifically, on average, these workers experience a 5-year cumulative wage income

loss of 9 percent of one year’s earnings, driven by decreases in days worked. While we

do not find evidence of substantial wage scarring, wage income losses are only partially

offset by various benefits systems, and older workers are substantially more likely to enter

early retirement. We document that these impacts are quite pervasive across different

sectors of the economy, though income losses are larger for older workers, workers with

medium levels of education, and workers employed at smaller firms. In contrast, we

do not find evidence that incumbent workers face similar job and income losses from

firms’ investments in computer technology. This suggests that, from the perspective of

incumbent workers, automation is (at present) a more labor-displacing force.
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Figures

Figure 1. Automation cost shares around automation events
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Notes: N = 10, 425 in τ = 0.
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Figure 2. Firm-level outcomes for automating firms using event timing
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weighted by firm-level employment size in τ = −1. Whiskers reflect 95% confidence
intervals.
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Figure 3. What happens to workers at firms that automate?

(a) Relative annual wage income

2
1

0
-1

-2
-3

-4
An

nu
al

 w
ag

e 
in

co
m

e 
ch

an
ge

 (%
)

-3 -2 -1 0 1 2 3 4
Year relative to automation event

(b) Hazard rate of leaving the firm
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(c) Days in non-employment
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(d) Log daily wage
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Notes: N = 8, 791, 392 for annual real wage income and days in non-employment, N = 8, 021, 759 for hazard of firm
separation, N = 8, 429, 129 for log daily wages. Whiskers represent 95 percent confidence intervals.
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Figure 4. Effect of automation on annual benefit income and early retirement

(a) Annual benefit income
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Figure 5. Relative annual wage income effects of automation and computerization

-4
-3

-2
-1

0
1

An
nu

al
 w

ag
e 

in
co

m
e 

ch
an

ge
 (%

)

-3 -2 -1 0 1 2 3 4
Year relative to automation event

All computerization events All automation events
Computerization, no automation Automation, no computerization

Notes: All estimates are for the overlapping sample where we observe data
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for all computerization; N = 8, 525, 056 for all computerization excluding
automation; N = 8, 499, 112 for all automation; and N = 5, 167, 464 for
automation excluding computerization.
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Tables

Table 1. Automation costs

All observations Automation costs >0
Cost Cost Cost Cost Cost Cost
level per worker share (%) level per worker share (%)

p5 0 0 0.00 2,211 59 0.04
p10 0 0 0.00 3,987 101 0.06
p25 0 0 0.00 10,487 256 0.14
p50 11,736 283 0.16 30,000 641 0.32
p75 52,824 986 0.47 93,711 1,446 0.68
p90 192,458 2,256 1.06 305,290 2,949 1.37
p95 453,582 3,625 1.69 713,180 4,591 2.13
mean 211,307 1,045 0.44 307,794 1,522 0.64
N firms × years 238,713 163,881
Pct with 0 costs 31% 0%

Notes: Automation cost level and per worker are reported in 2015 euros, automation cost share is
calculated as a percentage of total costs, excluding automation costs. The number of observations is
the number of firms times the number of years.

42



Table 2. Automation costs by sector and firm size class

Total cost Cost per worker Cost share (%) Nr of obs
Mean Mean SD Mean SD Firms Firms × yrs

A. Sector
Manufacturing 430,125 1,078 7,065 0.36 0.58 5,513 44,375
Construction 78,225 457 1,463 0.20 0.36 4,429 28,182
Wholesale & retail trade 116,252 1,174 4,176 0.31 0.80 10,918 75,277
Transportation & storage 280,151 909 4,962 0.41 1.07 3,124 21,270
Accommodation & food serving 55,624 244 896 0.30 0.50 1,184 6,545
Information & communication 447,852 1,789 25,852 0.85 2.93 2,627 16,801
Prof’l, scientific & technical activities 149,069 1,283 5,490 1.02 1.75 3,977 23,581
Administrative & support activities 133,887 839 18,825 0.50 1.18 3,808 22,682
B. Firm size class
1-19 employees 12,269 921 14,568 0.40 1.30 9,499 48,073
20-49 employees 27,689 893 4,547 0.42 1.34 13,424 86,553
50-99 employees 61,601 954 4,345 0.42 0.96 6,192 47,072
100-199 employees 144,891 1,135 5,812 0.44 0.94 3,413 28,666
200-499 employees 406,461 1,573 21,305 0.51 1.11 1,943 17,868
≥500 employees 3,161,867 2,124 14,294 0.76 1.60 1,109 10,481

Notes: Automation costs in 2015 euros, automation cost shares as a percentage of total costs, excluding automation
costs. Total N firms is 35,580; Total N firms × years is 238,713.
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Table 3. Firm-level outcomes for automating vs non-automating firms

∆ log employment ∆ log daily wage ∆ log wage bill
(1) (2) (3) (4) (5) (6)

Automating 0.019*** 0.015*** -0.002 -0.002 0.016*** 0.013***
(0.006) (0.006) (0.003) (0.002) (0.005) (0.005)

Additional controls No Yes No Yes No Yes

Notes: N = 168,091 firm-year observations, where 10,425 out of 35,580 unique firms automate. All models
include calendar year fixed effects. Additional controls are two-digit sector dummies and initial-year values for
log employment and log mean daily wage. All models are weighted by the inverse of the number of firm-level
observations multiplied by average firm-level employment size. Standard errors are clustered at the firm-level.
*p<0.10, **p<0.05, ***p<0.01.

44



Table 4. Heterogeneity in incumbent worker impacts

Annual
wage
income

Separation
hazard

Days non-
employed

Log daily
wage

A. Firm size
1–19 employees (reference) -3.17*** 1.83*** 4.25*** -2.21***

(0.76) (0.37) (1.39) (0.48)
Deviations from reference group for:
20–49 employees 0.23 -0.13 -0.19 0.87

(0.91) (0.46) (1.64) (0.57)
50–99 employees 2.42** -0.47 -3.26* 1.80***

(0.96) (0.57) (1.78) (0.62)
100–199 employees 1.35 -1.38** -1.93 1.00

(1.11) (0.69) (2.09) (0.69)
200–499 employees 2.21* 0.07 -1.21 2.54***

(1.16) (0.90) (2.38) (0.74)
≥500 employees 0.77 -0.17 1.25 1.77*

(1.51) (2.57) (3.19) (0.94)
N 8,791,392 8,021,759 8,791,392 8,429,129

B. Worker age
Age ≥50 (reference) -3.97*** 2.82*** 10.14*** -0.45

(1.25) (0.92) (2.28) (0.56)
Deviations from reference group for:
Age 40–49 2.62* -1.17** -7.56*** -0.15

(1.36) (0.58) (2.64) (0.49)
Age 30–39 2.25* -1.63** -7.39*** -0.55

(1.27) (0.74) (2.68) (0.66)
Age 20–29 3.20* -1.54 -9.15*** 0.40

(1.71) (1.07) (2.70) (0.91)
N 8,791,392 8,021,759 8,791,392 8,429,129

C. Worker education level
Medium education (reference) -2.54*** 2.81 5.25** -1.13***

(0.77) (1.97) (2.21) (0.41)
Deviations from reference group for:
Low education 0.86 -1.42 -0.78 0.76

(1.47) (1.33) (2.34) (0.90)
High education 1.21* 0.30 -2.15 0.78

(0.70) (1.31) (1.64) (0.70)
N 2,511,583 2,177,563 2,511,583 2,413,426

Notes: All coefficients are average annual effects over the post-treatment period (τ = 0
through τ = 4). Coefficients for wage income, separation hazard, and log daily wages have
been multiplied by 100 to reflect percentages. Education is classified using ISCED-2011:
low is up to and including lower secondary education; medium is upper secondary or post-
secondary education excl. tertiary education; and high education is tertiary education.
*p<0.10, **p<0.05, ***p<0.01.
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Appendices

Appendices occur in the order as they are referred to in the main text.
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A Data

A.1 Automation costs over time

Figure A.1 shows how the distribution of automation costs per worker (top panel) and

automation cost shares (bottom panel) have changed over time. Mean automation costs

per worker and the mean automation cost share are rising over 2000–2016. Furthermore,

besides increases in means, there is a fanning out of the distributions with automation

costs rising faster for higher percentiles.
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Figure A.1. Automation costs over time

(a) Automation costs per worker
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A.2 Correlations between automation costs and specific tech-

nologies

Table A.1 reports correlations between firms’ (standardized) automation cost shares and

their self-reported implementation with self- or externally developed process, product,

and organizational innovations (all three measured as dummies). The model controls for

sector fixed effects and firm size.

Table A.2 estimates the same model– again controlling for sector fixed effects and

firm size– for a host of self-reported uses of specific technologies, all of which are given

as dummy variables in the data. Note that since these variables originate from different

survey years, they have varying overlap with the firms where we observe automation

costs; and cannot be entered jointly in a single regression.

Table A.1. Firm-level correlations between automation cost shares
and type of innovation

Dependent variable: Standardized automation cost share
Process innovations 0.205***

(0.048)
Product innovations 0.098**

(0.036)
Organizational innovations 0.100*

(0.041)
N 7,163

Notes: Automation cost shares as a percentage of total costs,
excluding automation costs. Model controls for one-digit in-
dustry fixed effects and the log number of workers at the firm,
and is weighted by survey weights.
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Table A.2. Firm-level correlations between automation cost shares and technology usage

Dependent variable: Standardized automation cost share
Use of electronic data suited to automated processing 0.246*** Received orders for goods or services through EDI 0.104**

(0.054) (0.034)
N 4,315 Ordered through Electronic Data Interchange (EDI) -0.097**

(0.032)
CRM, inventory and distribution analysis 0.202*** N 14,180

(0.041)
Customer Relationship Management (CRM), customer analysis 0.052 Sales software 0.089**

(0.048) (0.030)
N 11,934 Purchasing software 0.002

(0.030)
Enterprise Resource Planning (ERP) software 0.162*** N 7,834

(0.027)
N 12,542 Radio Frequency Identification (RFID) 0.051

(0.083)
Automated records used for value chain integration 0.201** N 4,149

(0.066)
Value chain integration -0.012 Local Area Network (LAN) 0.015

(0.047) (0.027)
N 7,883 7,656

Big data analysis 0.126* Internet for financial transactions 0.015
(0.053) (0.025)

N 4,684 N 7,530

Cloud-services: Software for customer information mngmnt 0.170* Internet for training and education (incl. e-learning) 0.036
(0.085) (0.031)

Cloud-services: Software for accounting and financial mngmnt 0.141* N 8,388
(0.063)

N 6,715

Notes: Automation cost shares as a percentage of total costs, excluding automation costs. Model controls for one-digit industry fixed effects and the
log number of workers at the firm, and is weighted by survey weights.
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A.3 Technology usage by sector

Table A.3 shows that the overall use of data for automated processing is relatively com-

mon in all sectors, reflecting this is a general characteristic of automation. CRM software

for inventory management is used in Professional activities and Information & commu-

nication services as well as in Manufacturing. Further, over 60 percent of manufacturing

firms use ERP, more than 20 percentage points more than in Wholesale & retail, the sector

which has the second-highest rate of use. Automation-compatible value chain integration

is also most prevalent in Manufacturing, Wholesale & retail, and Transportation & stor-

age. By contrast, the use of cloud software for accounting and CRM is most widespread

in service sectors: Professional activities, Information & communication, and Administra-

tive activities. Applications of big data analysis vary: in Information & communication

and Manufacturing, the use of internal firm data is most common, in Transportation

this is (unsurprisingly) location data, and the use of social data is most common in

Professional activities as well as Accommodation & food serving.
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Table A.3. Technology usage by sector

Data for
automated
processing

CRM for
inventory
& distribu-

tion

ERP
software

Automation-
compatible
value chain
integration

Cloud
software
for CRM

Cloud
software

for
accounting

Big data:
Internal
firm

Big data:
Location

Big data:
Social

Big data:
Other

Manufacturing 0.36 0.47 0.63 0.15 0.09 0.11 0.14 0.05 0.05 0.03
Construction 0.23 0.24 0.24 0.05 0.09 0.12 0.10 0.14 0.07 0.01
Wholesale & retail trade 0.43 0.42 0.41 0.17 0.12 0.14 0.12 0.07 0.13 0.05
Transportation & storage 0.39 0.29 0.27 0.18 0.10 0.14 0.16 0.20 0.07 0.05
Accommodation & food serving 0.27 0.18 0.10 0.05 0.14 0.23 0.06 0.05 0.18 0.01
Information & communication 0.43 0.64 0.35 0.10 0.35 0.35 0.15 0.13 0.21 0.07
Prof’l, scientific, & technical activities 0.40 0.52 0.28 0.08 0.20 0.29 0.08 0.06 0.12 0.06
Administrative & support activities 0.34 0.39 0.23 0.08 0.19 0.25 0.07 0.05 0.11 0.04
N 4,315 11,938 12,542 11,028 6,715 6,715 4,684 4,684 4,684 4,684

Notes: Observation numbers differ across columns because technology usage variables are obtained from different survey waves; and because we have discarded missing and
imputed values.
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A.4 Automation imports

We obtain data on firms’ imports, exports, and re-exports of intermediates from Statistics

Netherlands: unlike our automation cost measure, which starts in 2000, we can only iden-

tify these trade variables from 2010 onward. Following the literature, we define automa-

tion machinery using CN-2018 product codes. In particular, we follow the categorization

of Acemoglu and Restrepo (2021) and include automatically controlled machines, auto-

matic transfer machines, automatic welding machines, numerically controlled machines,

and robots as automated machinery. Examples of descriptions of automatically controlled

machines are “Automatic regulating or controlling instruments and apparatus”; exam-

ples of automatic transfer machines are “Continuous-action elevators and conveyors, for

goods or materials”; examples of automatic welding machines are “Machines and appara-

tus for arc (including plasma arc) welding of metals”; examples of numerically controlled

machines are “Numerically controlled bending, folding, straightening or flattening ma-

chines (including presses)”; and robots are described as “Industrial robots, not elsewhere

specified or included”.

Detailed product codes for each of these are as follows:

• Automatically controlled machines:

90321080, 90321000, 90328100, 90320000, 90321020, 90328900, 90328100, 90329000,

90322000

• Automatic transfer machines:

84283100, 84283900, 84573090, 84283300, 84283200, 84283990, 84580000, 84283100,

84283920, 84573000, 84573010

• Automatic welding machines:

85153100, 85153100, 85152100, 85152100

• Numerically controlled machines:

845811000080, 845811200080, 845811410010, 845811410080, 845811490080,

845811800080, 845891000010, 845891000080, 845891200080, 845891800080,

845921000010, 845921000080, 845931000010, 845931000080, 845941000010,
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845941000080, 845951000010, 845951000080, 845961000010, 845961000080,

845961100080, 845961900080, 846012000010, 846012000080, 846022000010,

846022000080, 846023000080, 846024000080, 846031000010, 846031000080,

846040100080, 846221000010, 846221000080, 846221100080, 846221800080,

846231000010, 846231000080, 846241000010, 846241000080, 846241100080,

846241900080

• Robots: 84795000

Figure A.2 shows real total imports, exports, and re-exports for automation technol-

ogy over 2010–2016. Re-exports are defined as goods transported via the Netherlands

which are (temporarily) owned by a resident of the Netherlands without any significant

industrial processing (including, for example, goods that are cleared by Dutch distri-

bution centers and exported to other (European) countries). This shows that exports

of automation technologies exceed imports in the Netherlands, and that there is also a

substantial amount of re-exports.

Table A.4 compares automation costs and automation imports as a percentage of

total operating cost for the overlapping subsample of firms at the sector level53, revealing

that average automation expenditures are substantially higher than average automation

imports – since few firms are importers–, and observed across a wider range of sectors.

Automation imports and automation expenditures are somewhat correlated at the firm-

level, as shown in the first two columns of Table A.5 where firm-by-year automation

expenditures are regressed onto (net) automation imports while controlling for firms’

total operating cost, and additionally year fixed effects in the second column. However,

this correlation disappears when adding firm fixed effects (seen from the last two columns

of Table A.5): that is, firms are not more likely to have higher automation costs when

they (net) import more automation technology.

53We construct firm-level averages and remove firms which cease operations before 2009

when comparing our automation cost data to automation imports.
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Figure A.2. Total automation imports, exports, and re-exports over time
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Table A.4. Comparing automation costs to automation imports by sector

Mean percentage in total costs, for automation:
Sector Costs Imports Net imports
Manufacturing 0.347 0.080 0.042
Construction 0.196 0.001 0.001
Wholesale & retail trade 0.300 0.058 0.051
Transportation & storage 0.352 0.134 0.095
Accommodation & food serving 0.268 0.000 0.000
Information & communication 0.810 0.004 0.004
Prof’l, scientific, & technical activities 1.000 0.007 0.005
Administrative & support activities 0.434 0.003 0.003

Notes: Total N firms is 30,291. Net automation imports are defined as imports minus
re-exports. Total costs include automation costs.
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Table A.5. Comparing automation costs to automation imports
between and within firms

Dependent variable: Automation costs (IHS)
(1) (2) (3) (4)

Automation imports (IHS) 0.018** 0.018** -0.001 -0.002
(0.007) (0.007) (0.004) (0.004)

(5) (6) (7) (8)

Net automation imports (IHS) 0.016* 0.016* -0.003 -0.003
(0.006) (0.006) (0.004) (0.004)

Year fixed effects No Yes No Yes
Firm fixed effects No No Yes Yes
Log total costs Yes Yes Yes Yes

Notes: 110,805 firm-year observations for each model. Automation costs, imports, and
net imports are transformed using the inverse hyperbolic sine (IHS). Net automation
imports are defined as imports minus re-exports. All models control for log total costs at
the firm-year level. Standard errors are clustered at the firm-level. *p<0.10, **p<0.05,
***p<0.01.
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B Theoretical model of firm-level automation spikes

As in Bonfiglioli et al. (2021), our model adds monopolistic competition and firm hetero-

geneity to task models of endogenous automation developed by Acemoglu and Restrepo

(2018, 2019). As in Bonfiglioli et al. (2021), we abstract from new task creation as this is

not our object of study. However, the assumptions in our model also differ from Bonfigli-

oli et al. (2021) in two ways. First, our model assumes fixed instead of convex adjustment

costs of automation. Second, our model formulates the firm’s decision to automate as

a dynamic instead of a static profit maximization problem. In particular, it assumes

that the fixed costs of automation are irreversible (i.e. cannot be recouped other than

through higher profits in the future) and that the lowest possible output price using the

most recent automation technologies falls over time.

Together, this implies that a firm will automate when the expected gain from moving

to the lowest possible output price outweighs its costs of adjustment (abstracting from

the importance of product demand shocks). However, because adjustment costs are fixed

and irreversible, a firm will not automate in every period. Instead, immediately after the

firm decides to automate it will wait a number of periods until the increase in expected

profit again outweighs its fixed adjustment costs. Therefore, our model predicts spikes in

automation cost shares over time. This prediction of spikes in automation costs shares

is key to our empirical identification strategy. It is also consistent with the literature on

lumpy investment in capital, as in Haltiwanger et al. (1999); Doms and Dunne (1998), or

in robots, as in Humlum (2021). However, these papers do not capture the task-based

approach to endogenous automation.
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B.1 Exogenous automation

B.1.1 Consumption

Assume consumers derive utility from consuming goods Y1,...,YJ , according to the follow-

ing CES utility function:

U(Y1, ..., YJ) =
 J∑
j=1

[εjYj]
σ−1
σ

 σ
σ−1

(B.1)

such that
J∑
j=1

PjYj = PY

where σ > 1.54 εj captures specific preferences across goods, Y is utility or real income

spent on Y1,...,YJ , and P is the ideal price index55 The price index P is given by:

P (P1, ..., PJ) ≡
 J∑
j=1

[Pj/εj]1−σ
 1

1−σ

= 1 (B.2)

where the last equality follows from choosing consumption as the numeraire such that all

prices are relative to P .

From equations (B.1) and (B.2) we obtain that product demand for firm j is given

by:

Yj = Y εσ−1
j P−σj (B.3)

where Y captures demand shocks that are common across all firms j = 1, ..., J , and εj

captures shocks in the relative demand for Yj relative to Yj̃ with j̃ 6= j and j̃ = 1, ..., J .56

54Humlum (2021) assumes that σ = 4.
55Note that ∑J

j=1 PjYj = E(P (1), ..., P (J), U) = e(P (1), ..., P (J))U = PY with

E(P (1), ..., P (J), U) the expenditure function, P ≡ e(P (1), ..., P (J)) the expenditure

function per unit of utility, and Y ≡ U utility or real income spent on Y1,...,YJ .
56If εj would be the same for all j, it would disappear from equations (B.2) and (B.3).

Also, if εj’s are different across j but would all increase by the same proportion, equa-

tion (B.3) simplifies to Yj = Y ε−1
j P−σj capturing that utility but not real income has
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B.1.2 Production

For each firm j = 1, ..., J , the production of Yj is given by the following Cobb-Douglas

production function:

Yj = exp
(∫ 1

0
ln(yj(z))dz

)
(B.4)

with yj(z) a quantity of task z used in the production of Yj.57

Each task is produced using a quantity of capital, kj(z), or labor, `j(z), according to:

yj(z) =


`j(z) + γj(z)kj(z) if z ∈ [0, I]

`j(z) if z ∈ (I, 1]
(B.5)

with γj(z) a firm-specific task productivity schedule of capital. Assume that γj(z) is

decreasing in z. That is, tasks are ordered on the unit-interval such that capital has a

comparative advantage in the production of lower-indexed tasks.

Task I ∈ (0, 1) is a task threshold such that all tasks z ≤ I can be produced by labor

or capital (and will be produced by capital in equilibrium), and all tasks z > I can only

be produced by labor. Also assume that for all relevant levels of I:

W >
R

γj(I) (B.6)

with W is the price of one unit of `j(z) and R is the price of one unit of kj(z). That is, as

new automation technologies make it feasible for labor tasks just above I to be performed

by capital, cost minimizing firms have an incentive to adopt these new automation tech-

increased by the same proportion.
57Equation (B.4) implicitly assumes that the elasticity of substitution between tasks is

unity. Although direct estimates do not exist, Goos et al. (2014) report an elasticity

of substitution between 21 occupations of 0.85, and Humlum (2021) finds an elasticity

of substitution between production workers, tech workers and other workers of 0.49.

Assuming a more general CES production function would not qualitatively change the

analysis.
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nologies. Consequently, all tasks z ∈ [0, I] will exclusively be performed by capital. We

also assume that firm j takes I as given when deciding how much labor and capital to

use, i.e. that technology is a quasi-fixed factor. Section B.2 relaxes this assumption by

endogenizing the firm’s decision to automate.

Finally, firm-level employment of capital Kj and labor Lj is given by:

∫ 1

0
kj(z)dz = Kj and

∫ 1

0
`j(z)dz = Lj (B.7)

and we assume that each firm takes the wageW and the rental rate of capital R as given.

B.1.3 Conditional factor demands

If factors are paid their revenue marginal products and firms minimize costs, the unit-cost

of producing task z, pj(z), is given by:

pj(z) =


R/γj(z) if z ∈ [0, I]

W if z ∈ (I, 1]
(B.8)

Given that equation (B.4) is a Cobb-Douglas production function using a continuum

of tasks on a unit-interval, cost shares must be constant and equal across all tasks in

equilibrium. In particular, we must have that:

∀z : pj(z)yj(z) = σ − 1
σ

PjYj (B.9)

where [σ − 1]/σ < 1 accounts for the fact that firm j earns a profit PjYj/σ because it

charges a constant price mark-up σ/[σ − 1] > 1 over marginal costs.58

58Given constant returns to scale and no fixed costs, marginal and average costs are the

same such that a constant mark-up σ/[σ − 1] over marginal costs implies that average

costs can be written as [σ − 1]/σPj. Consequently, profits per unit of output are given

by Pj − [σ − 1]/σPj = Pj/σ and profits can be written as PjYj/σ.
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Using equation (B.9) together with equations (B.5) and (B.8), it holds that:

kj(z) =


σ−1
σ

PjYj
R

if z ∈ [0, I]

0 if z ∈ (I, 1]
`j(z) =


0 if z ∈ [0, I]

σ−1
σ

PjYj
W

if z ∈ (I, 1]
(B.10)

which gives demand for capital and labor for each task z, respectively.

Using equations (B.7) and (B.10) then solves for RKj and WLj:

RKj = I
σ − 1
σ

PjYj (B.11)

and

WLj = [1− I]σ − 1
σ

PjYj (B.12)

which gives the firm’s conditional factor demands.

B.1.4 Output as a Cobb-Douglas aggregate

In equilibrium, Pj is a constant mark-up σ/[σ−1] > 1 over the marginal cost of producing

Yj. Using the corresponding expression for the marginal cost of producing Yj given the

Cobb-Douglas production function in equation (B.4), we get that:

Pj = σ

σ − 1 exp
(∫ 1

0
ln(pj(z))dz

)
(B.13)

Substitute expressions for R and W from equations (B.11) and (B.12) into equation

(B.8). Then substitute equation (B.8) into equation (B.13). Taking logarithms, we

obtain:

ln(Yj) =
∫ I

0
ln(γj(z))dz + I ln(Kj

I
) + [1− I] ln( Lj

1− I )

Taking the exponential on both sides yields the following expression for firm output:

Yj = ϕj

[
Kj

I

]I [ Lj
1− I

]1−I
(B.14)
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where ϕj is defined as:

ϕj ≡ exp
(∫ I

0
ln(γj(z))dz

)

B.1.5 Unconditional labor demand

Dividing equation (B.11) by equation (B.12) gives:

Kj

I
= 1

1− I
W

R
Lj (B.15)

and substituting equation (B.15) into equation (B.14) gives:

Yj = ϕj
Lj

1− I

[
W

R

]I
(B.16)

Substituting equation (B.16) into equation (B.12) and using equation (B.3):

Lj =
[
σ − 1
σ

]σ
Y εσ−1

j W−σ[1− I]
[[
W

R

]I
ϕj

]σ−1

(B.17)

with σ > 1 and I ∈ [0, 1].

Equation (B.17) is the firm’s unconditional demand for labor. It shows that firm-level

labor demand increases if there is an increase in the firm’s product demand captured by

an increase in Y if the shock is common across firms, or in εj if the product demand shock

is firm-specific. Equation (B.17) also shows that an increase in the automation possibility

frontier I has an ambiguous impact on labor demand. On the one hand, 1− I decreases

capturing a direct displacement effect. On the other hand, [W/R]Iϕj increases capturing

a productivity effect from automation. To see that the productivity effect is positive, take

logs of [W/R]Iϕj and differentiate with respect to I. We then get ln(Wγj(I)/R) which

is positive given equation (B.6). Finally note that the productivity effect is increasing

in γj(I). That is, the productivity effect is larger and labor demand is more likely to

increase in a firm where capital is more productive at the automation possibility frontier.
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B.1.6 Output

Substitute equation (B.17) into equation (B.16) we get the following expression for output:

Yj = Y εσ−1
j

[
σ

σ − 1
W 1−IRI

ϕj

]−σ
= Y εσ−1

j P−σj (B.18)

with

Pj = σ

σ − 1
W 1−IRI

ϕj
(B.19)

The first ratio on the right-hand side of equation (B.19) is the constant price mark-up

and the second ratio is the marginal cost of producing Yj.

Equation (B.18) shows that firm-level output increases if there is an increase in the

firm’s product demand for a given output price. Equations (B.18) and (B.19) also show

that firm-level output increases if the automation possibility frontier I increases because

of a productivity effect from automation that decreases marginal costs and therefore the

output price. To see that the productivity effect decreases marginal costs, take logs of

W 1−IRIϕ−1
j and differentiate with respect to I. We then get ln(R/[Wγj(I)]) which is

negative given equation (B.6).

B.1.7 Profits

Using equations (B.18) and (B.19), profits can be written as:

Πj = PjYj
σ

=
Y εσ−1

j

σ

[
σ

σ − 1
W 1−IRI

ϕj

]1−σ

(B.20)

showing that profits increase following an increase in product demand for a given output

price or following a decrease in the output price because of automation.
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B.2 Endogenous automation

B.2.1 Expected profits

Denote time periods by t and assume that firm j chooses if and when to automate by

maximizing expected profit:

max
Dj0,Dj1,...

E
∞∑
t=0

βt [Πjt −DjtFj]

with Djt = 1 if firm j decides to automate at time t and Djt = 0 otherwise. Fj is a fixed

firm-specific cost of automation.59 β < 1 is the discount rate.60 Substituting Πjt with

equation (B.20) gives:

max
Dj0,Dj1,...

E
∞∑
t=0

βt
[
Ytε

σ−1
jt

σ
P 1−σ
jt −DjtFj

]
(B.21)

with Pjt given by equation (B.19).61

The adjustment cost of adopting a new technology Fj is fixed (in real terms) and

therefore indivisible. We also assume that these fixed costs cannot be recouped other

than through higher future profits, which also makes them irreversible. It is plausible

that investments in automation meet these two criteria: automation likely requires fixed

adjustment costs from reorganizing production processes, and these costs are irreversible

if they require e.g. the development of custom software or worker training.

59The model presented in Bonfiglioli et al. (2021) is similar to ours but differs in that

automation costs are assumed to be convex instead of fixed.
60Humlum (2021) assumes an annual discount rate β = 0.96.
61Note that we implicitly assume that automation does not result in a wage premium for

workers (who remain or are newly) employed at automating firms. This is in line with

our empirical findings.
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B.2.2 Technological progress

When a firm decides not to automate, it keeps producing at the same marginal cost. But

when a firm decides to automate, its marginal cost and therefore its output price de-

crease to minimum values determined by the technological frontier. We also assume that

these minimum values decrease over time because of underlying exogenous technological

progress captured by an increase over time in It (and possibly also γjt(z) for all or some

z that is common across firms). In particular, we assume that:

Pjt =


Pjt−1 if Djt−1 = 0

Pt if Djt−1 = 1
(B.22)

where Pt is the lowest possible output price using the most recent automation technologies

and given that the firm decided to automate in period t − 1.62 Further assume that

technological progress is captured by a decrease in Pt over time given by Pt = µPt−1 with

µ < 1.63

If the firm last adopted automating technologies in period t̃, the “age” of its technology

in period t is t− t̃. Its output price in period t can be written as Pjt = Pjt̃ = Ptµt̃−t. That

is, the firm’s relative output price increases as its technology ages. Normalizing Pt = 1

in every period, we can rewrite the firm’s expected profit in equation (B.21) as:

max
Dj0,Dj1,...

E
∞∑
t=0

βt
[
σ−1Ytε

σ−1
jt µ(t̃−t)(1−σ) −DjtFj

]
(B.23)

62The assumption that the decision to automate or otherwise invest happens one period

in advance is common in the literature estimating firm-level production functions, in-

cluding Humlum (2021); Doraszelski and Jaumandreu (2013); Olley and Pakes (1996).
63Strictly speaking Pt is each firm’s lowest possible relative output price. This implicitly

assumes that not all firms decide to automate (or not) at the same time despite common

technological progress, which in our model will be true because firms differ in their fixed

adjustment costs.
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where the firm can reset t̃ to t such that t̃− t = 0 if it chooses to automate (Djt−1 = 1).

B.2.3 Spikes in automation expenditures

The indivisibility and irreversibility of automation costs imply that automation occurs

in relatively infrequent episodes of disproportionately large quantities. Consistent with

the literature on lumpy investment (Haltiwanger et al. 1999; Doms and Dunne 1998),

our model therefore predicts spikes in firms’ automation cost expenditures. In particular,

equation (B.23) captures that the firm’s expected profit decreases over time if it does not

automate given that µ < 1 and (t̃− t)(1− σ) > 0 (because t ≥ t̃ and σ > 1). The reason

for this is that the firm falls further behind the technology frontier as its technology ages.

To see this more formally, derive the firm’s per-period profit excluding adjustment

cost with respect to t to get (for given Yt and εjt):

∂[σ−1Ytε
σ−1
jt µ(t̃−t)(1−σ)]
∂t

= σ − 1
σ

Ytε
σ−1
jt µ(t̃−t)(1−σ) ln(µ) < 0 (B.24)

where the last inequality follows given that σ > 1, t ≥ t̃, and µ < 1. Said differently, the

increase in expected profits from automation implies that a firm will automate. However,

the firm will not automate in every period given its fixed costs of automation. In par-

ticular, immediately after the firm decides to automate it will wait a number of periods

until the increase in expected profit again outweighs its fixed adjustment cost.

In sum, our model predicts spikes in firms’ automation cost shares over time because

automation involves fixed costs and automation events are preceded and followed by

periods in which firms will not automate. Moreover, firms will automate at different

points in time if they have different fixed adjustment costs.

B.2.4 Shocks to product demand

Not only technological progress and the firm’s fixed cost of automation determine when

a firm automates. Shocks in the firm’s product demand will also increase profits which

could induce the firm to automate. To illustrate this, assume an increase in real income

Yt which increases the firm’s product demand. If the firm, after observing Yt, expects that
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Yt+1 will also be higher (e.g. because shocks to product demand follow a Markov process),

equation (B.24) shows that expected profits in t+1 will be higher. Importantly, equation

(B.24) further shows that this increases the firm’s increase in expected profits if it decides

to automate. The same is true for an increase in εjt. In sum, positive shocks to product

demand that persist over time increase the likelihood that the firm will automate.64

Therefore, persistent shocks to product demand are likely to (in part) predict au-

tomation events. However, they also directly affect firms’ future outcomes, making them

potential confounders for estimating the causal impact of automation. For example, equa-

tion (B.17) shows that a persistent positive product demand shock directly increases the

firm’s future labor demand. If this product demand shock is unobserved by the econome-

trician while it also induces the firm to automate, estimates of the impact of automation

on labor demand will be upward biased.

B.3 Empirical implications

Automation can empirically be measured as spikes in automation costs which we di-

rectly observe at firm-level, capturing Fj when Djt = 1. Assuming that Fj is larger for

larger firms, we express automation costs as a share of the firm’s total costs excluding

automation costs.65 When a firm decides to automate, our model predicts a spike in the

firm’s automation cost share because automation involves fixed costs and is preceded and

followed by periods in which the firm will not automate.

Further, our model highlights that common demand shocks (captured by Yt) that are

persistent over time may trigger automation in some firms, depending on the level of

firm-specific fixed costs. These common shocks are a threat to identification when using

64Only if product demand shocks are independently and identically distributed will they

not be correlated with the firm’s decision to automate. If product demand shocks are

i.i.d., they are not informative about the future and therefore will not affect the firm’s

decision at time t whether or not to automate.
65This is similar to Bonfiglioli et al. (2021) who construct a proxy for automation intensity

defined in their model as the firm’s chosen level of automation over capital expenditure.
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a firm-level event-study design: automation events may be correlated with such positive

common demand shocks, confounding the effects on firm-level outcomes. This motivates

using difference-in-differences, comparing firms that do and do not automate in any given

year, removing the common shock component.

However, firm-specific demand shocks (captured by εjt) may confound identification in

such a difference-in-differences set-up. In particular, our model points out that firms we

do not observe automating may fail to do so exactly because they do not experience (large

enough) persistent positive firm-specific demand shocks within our observation window.

If automating firms experience more positive demand shocks than do non-automating

firms, we will obtain a biased estimate of the impact of automation when comparing

automators to non-automators. This motivates our empirical approach of exploiting

firm automation timing among firms that we do observe automating: that is, we use a

difference-in-differences event-study design.

We can interpret the two identification assumptions of parallel trends and no antici-

pation for our difference-in-differences event-study design, outlined in Section 4.2, in the

context of this model:

1. Firm-specific product demand shocks must be identically and independently dis-

tributed for automating firms. That is, εjt is i.i.d. for firms which automate at some

point in our observation window. If these firm-specific product demand shocks are

not i.i.d. among automators, the firm’s decision of when to automate will be posi-

tively correlated with persistent firm-specific product demand shocks and its direct

impact on firm outcomes in the future. I.i.d. εjt result in parallel trends between

firms that automate at different points in time. Our empirical analyses provide

evidence for this parallel trends assumption by showing that pre-event trends are

mostly similar for firms that have an automation event now compared to those that

have an automation event later. We also match individual incumbent workers on

observable characteristics and show there are no pre-trends in their labor market

outcomes.

Related theories make similar assumptions. Bonfiglioli et al. (2021) present a static

23



model, thereby implicitly assuming that firm-specific shocks in product demand

are i.i.d. Humlum (2021) assumes firm-specific productivity (instead of product

demand) shocks that evolve according to a Markov chain of length three. He then

draws on the literature that estimates firm-level production functions to estimate

parameters in the Markov chain. Assuming that any remaining unobserved produc-

tivity shocks are i.i.d., he then matches pairs of firms on initial firm-level outcomes

before one (but not the other) firm automates to causally estimate the impact of

automation on firm-level outcomes.

2. No anticipation implies firms do not anticipate automation when determining how

many workers to employ and how much to produce. This is captured by our as-

sumption (in section B.1) that firms treat their technology as given. Moreover, we

implicitly assume that not only firms but also workers take the firm’s technology

as given when making decisions about labor supply.

Similar assumptions are made in related papers. Humlum (2021) makes similar

no-anticipation assumptions for firms and workers, while also explicitly modeling

workers’ labor supply in general dynamic equilibrium. Although Bonfiglioli et al.

(2021) present a static model, they also implicitly assume that firms treat their

technology as quasi-fixed when maximizing operating profits and that, just as we

do here, firm-level labor supply is perfectly elastic.

Arguably, the non-anticipation assumption is less likely to hold for firms than for

their incumbent workers (i.e. workers with at least 3 years of tenure). One rea-

son is that firms (instead of all their incumbent workers) decide whether or not

to automate and that firms are better informed about the likely consequences of

automation (and even control them). Another reason is that employment at the

firm-level is more flexible, e.g. because of regular turnover or fixed-term contracts,

than incumbent workers’ perceived outside options. Finally, incumbent workers

(rather than recent hires employed at the firm) are less likely to adjust their labor

supply in anticipation of an automation event. Therefore, we are more cautious in

interpreting effects of automation at the firm level as causal but are more confident

24



at the incumbent worker level.
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C Automation events

C.1 Automation spike frequency

Table C.1. Spike frequency

Spike frequency N firms % of N
firms

0 25,155 70.7
1 8,354 23.5
2 1,772 5.0
3 266 0.7
4 or 5 33 0.1
Total 35,580 100

Notes: Spike frequency is defined as the to-
tal number of spikes occurring over 2000–
2016. The total number of firms is 35,580
and the total number of firms with at least
one automation cost share spike is 10,425.

C.2 Automation events across sectors and firm size classes

Table C.2. Share of firms ever having an automation spike

By sector
Manufacturing 0.29
Construction 0.25
Wholesale & retail trade 0.27
Transportation & storage 0.30
Accommodation & food serving 0.27
Information & communication 0.39
Prof’l, scientific & technical activities 0.33
Administrative & support activities 0.30

By firm size
1-19 employees 0.26
20-49 employees 0.30
50-99 employees 0.31
100-199 employees 0.29
200-499 employees 0.32
≥500 employees 0.28

Notes: N=35,580 firms.
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C.3 Automation and total costs around automation events

Figure C.1 shows the two components making up our automation spike measure, au-

tomation costs and total costs, for a balanced sample of firms around automation events.

This highlights that automation spikes are driven by increases in automation costs, not

decreases in total costs.

Figure C.1. Automation costs and total costs around automation spikes
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D Firm-level analyses

D.1 Predicting automation events

Table D.1 estimates a firm-level linear probability model where the dependent variable

is a dummy for the firm having at least one automation spike over 2000–2016. This

table highlights that firms that have automation events are different from those that do

not. In particular, the probability of having an automation event is higher for firms with

younger and more highly educated workers and with a higher fraction of men, firms that

pay higher wages, larger firms, and firms in Information & communication, Professional,

scientific & technical activities, Transportation & storage, and Administrative & support

activities.

Table D.1. Correlates of a firm ever having an automation spike

Mean annual wage 0.0009*** Manufacturing reference
(0.0002)

Share of women -0.0259** Construction -0.0003
(0.0126) (0.0094)

Mean worker age -0.0034*** Wholesale & retail trade 0.0161**
(0.0005) (0.0080)

Share high educated 0.0368* Transportation & storage 0.0414***
(0.0197) (0.0102)

1–19 employees reference Accommodation & food serving -0.0022
(0.0155)

20–49 employees 0.1146*** Information & communication 0.1094***
(0.0060) (0.0123)

50–99 employees 0.1218*** Prof’l, scientific, & technical activities 0.0580***
(0.0074) (0.0112)

100–199 employees 0.1174*** Administrative & support activities 0.0262***
(0.0090) (0.0101)

200–499 employees 0.1317***
(0.0113)

≥500 employees 0.1133*** Constant 0.2856***
(0.0141) (0.0230)

Notes: 35,577 observations, each observation is a unique firm. The dependent variable
is having an automation spike at any point in the sample. Mean real annual wage in
thousands of euros. Standard errors in parentheses. *p<0.10, **p<0.05, ***p<0.01.
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D.2 Employment growth for automating and non-automating

firms: balanced panel

Figure D.1 uses the balanced panel of firms existing over the entire 17-year period

and plots a time series of firm-level employment averaged across automating and non-

automating firms with both series normalized to 100 in 2000.

Figure D.1. Average firm-level employment for firms with and without automation
events
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Notes: All firms existing over the entire 17-year period 2000–2016. N = 399
for firms with an automation event and N = 623 for firms without an
automation event.

D.3 Difference-in-differences with non-automating firms

Here, we construct a different control group for our main analysis. Instead of using firms

that automate later, we use firms that do not automate over the period we observe them.

We follow the same steps in constructing the sample as a stacked difference-in-differences

as discussed in the main text and estimate the same models.

Figure D.2 reports the findings for employment and wages. All estimates are weighted

by firm size. The top figures reveal that for employment there are clear divergent pre-

trends between automating and non-automating firms (right), which do not seem to exist
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when comparing automating with later-automating firms (left). By contrast, for wages

the pre-trends appear quite similar, while we find almost no significant impacts on wages

using non-automating firms and small positive impacts using later-automating firms as

control group.

An important limitation of this analysis is that we do not observe automation costs

for firms in each year. Hence, we cannot be sure that firms do not automate in a year

where we do not observe them in the survey. Restricting the sample to firms that we

observe each year would leave us with a very small dataset. This, along with the clear

differential employment trends between automating and non-automating firms observed

here and in the balanced panel in Appendix D.2, supports our design using later-treated

firms.
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Figure D.2. Using later-automating (left) vs non-automating firms (right) as control group
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(c) Log daily wage (baseline)
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Notes: N = 865, 848 for the sample using non-automating firms as control group and N = 170, 022 for the sample using
later-automating firms as control group. Whiskers represent 95 percent confidence intervals.
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D.4 Comparison to import-based automation measure

Here, we compare firms with and without automation events to importers and non-

importers of automation technology: this is done for the subset of 30, 291 firms in our

main sample where we can construct time-invariant importer information.

Table D.2 shows that firms that import automation technology are substantially larger

than firms that do not import such technology, consistent with findings for other countries

(e.g. see Bonfiglioli et al. 2021 and Humlum 2021). In particular, importing firms are

around 131% (exp(0.839) − 1) larger than non-importers, while firms with automation

cost spikes are only around 8.5% larger than firms without such spikes.

Table D.3 shows that, for all firm-level measures of automation, automating firms also

have faster employment and wage bill but not daily wage growth: however, employment

growth and wage bill differences are substantially larger when comparing automation

importers to non-importers. Specifically, (net) importers have around 3.7% faster wage

bill growth compared to non-(net-)importers, whereas firms with automation cost spikes

have 1.2% faster wage bill growth compared to firms without such events.

Table D.4 considers whether automation events are correlated with firms importing

automation technology at the firm level. We find that firms with non-zero mean (net)

automation imports are more likely to have automation events, implying that some firms

with automation events are also importers of automation technology. However, while over

30% of firms in this sample have an automation event, only around 8% are importers.

Further, Table D.5 shows that the correlation between automation events and occurrence

of automation imports is negligible within firms: this mirrors our finding for the within-

firm correlation between automation cost shares and automation import values reported

in Appendix Table A.5.

Lastly, we estimate the impact of automation cost spikes on firm-level employment,

wage, and wagebill growth for the sample of firms with automation events where we

observe import data, distinguishing between impacts for all firms and for the subsample of

firms which also import automation technology. Figure D.3 shows difference-in-differences

estimates as in equation 3. This shows that automation importers experience employment
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Table D.2. Correlation between firm size and automation type

Dependent variable: Log firm-level number of employees
Automation cost spike Automation imports

(1) (2) (3) (4)
Automating 0.078*** 0.085*** 0.856*** 0.839***

(0.013) (0.013) (0.022) (0.022)
Sector fixed effects No Yes No Yes

Notes: N = 30,291 firm-level observations. Automation imports measured
as non-zero mean automation imports at the firm level. Sector fixed effects
are two-digit sector dummies. *p<0.10, **p<0.05, ***p<0.01.

Table D.3. Employment, wage, and wagebill growth for firms with automation
cost spikes and non-zero automation imports

Dependent variable: ∆ log
employment

∆ log mean
daily wage

∆ log wage
bill

(1) (2) (3)
Cost spikes 0.012** 0.000 0.012**

(0.006) (0.002) (0.005)

(4) (5) (6)
Imports 0.0311*** 0.006* 0.037***

(0.008) (0.004) (0.006)

(7) (8) (9)
Net imports 0.030*** 0.006* 0.036***

(0.008) (0.003) (0.006)

Notes: N = 152,550 firm-year observations. All models include calen-
dar year fixed effects, and initial-year values for log employment and
log mean daily wage. All models are weighted by the inverse of the
number of firm-level observations multiplied by baseline firm-level em-
ployment size. Standard errors are clustered at the firm-level. *p<0.10,
**p<0.05, ***p<0.01.
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Table D.4. Firm-level correlation between automation events and automation imports

Dependent variable: Dummy for firm having an automation cost spike
(1) (2) (3) (4)

Importer 0.023* 0.029**
(0.010) (0.011)

Net importer 0.023* 0.029**
(0.010) (0.011)

Controls No Yes No Yes

Notes: N = 30,291 firm observations, where 31% of firms have automa-
tion cost spikes, and 8.2% (7.9%) have non-zero (net) imports. Controls
are log total costs and sector fixed effects. Standard errors are clustered
at the firm-level. *p<0.10, **p<0.05, ***p<0.01.

Table D.5. Within-firm correlation between automation events and automation imports

Dependent variable: Dummy for firm having an automation cost spike
(1) (2) (3) (4)

Importer 0.005 0.002 0.003 0.003
(0.005) (0.005) (0.005) (0.005)
(5) (6) (7) (8)

Net importer 0.003 0.000 0.001 -0.001
(0.005) (0.005) (0.005) (0.005)

Firm fixed effects Yes Yes Yes Yes
Year fixed effects No Yes No Yes
Log total costs No No Yes Yes

Notes: N = 110,805 firm-year observations. Standard errors are clustered at
the firm-level. *p<0.10, **p<0.05, ***p<0.01.

and wage growth around automation events.
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Figure D.3. Firm-level outcomes for automating firms, difference-in-differences using
event timing
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E Worker-level analyses

E.1 Sample construction

For each calendar year y we define a set of potential treatment and control group au-

tomation events as follows. Potential treatment events are defined as a firm having its

first automation event in treatment year c. c is between 2003 and 2011, so that for each

automation event we at least have a window of three years before and five years after

the event. This gives us 3,004 potential treatment group events. Potential control group

events for c are defined as firms that have their first automation event in year c + 5 or

later. Hence, these events have to occur between 2008 and 2016. This gives us 21,289

potential control group events.

Columns (1) and (2) in Table E.1 show the number of potential treatment and control

events per calendar year. Note that our procedure implies that multiple control group

events can involve the same firm, but for different calendar years. It is also possible that

one treatment group event and one or more control group events involve the same firm in

different calendar years. For example, a firm that has its first automation event in 2010

can be a potential treatment event in 2010, but also serve as a potential control event

for treatment events in 2003, 2004, or 2005. Similarly, a firm having its first automation

event in 2011 can serve as a control group event for treatment events in 2003, 2004,

2005, or 2006. For our 21,289 potential control events, 20,572 involve a firm that is

involved in more than one potential control event, while 717 events involve a firm that

is involved in only one potential control event. Firms with potential control events are

on average involved in 4.7 potential control events, with a maximum of 9 events. For our

3,004 potential treated events, 1,288 involve a firm that is also involved in at least one

potential control event in another year and 1,716 involve a firm that is not involved in a

potential control event.

We then merge our firm-level data to worker data and keep only events for which we

can find at least one incumbent worker who is between 18 and 65 years old at τ = −1.

This leaves us with 2,995 potential treatment events merged to 192,755 incumbent workers
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and 21,115 potential control events merged to 1,132,190 incumbent workers. We then

apply some sample selections to drop outliers. In particular, we drop workers with yearly

earnings more than 500,000 euros in any one year or an average daily wage above 2,000

euros. We also exclude students. Finally, we require incumbents to not receive any

benefits in the three years before treatment. This leaves us with 997, 057 potential control

workers and 162, 493 potential treated workers.66

Finally, we match treated and control group workers on pre-treatment annual real

wage income, separately by sector and calendar year. While the match is exact for

calendar year and sector, we use coarsened exact matching (CEM, see Iacus et al. 2012;

Blackwell et al. 2009) for pre-treatment income. To this end, we construct separate strata

for each 10 deciles of real wage income, as well as separate bins for the 99th and 99.9th

percentiles, in each of the three pre-treatment years τ = −3,−2,−1. We then match

treated workers to control group workers for each of these income bins, while additionally

requiring them to be observed in the same calendar year, and work in the same sector

one year prior to treatment. We include calendar year and sector matching to ensure

we are not capturing sector-specific business cycle effects, or other unobserved time-

varying shocks affecting workers based on their original sector of employment. As such,

each treated worker is matched to a set of controls from the same calendar and sector

and belongs to the same pre-treatment earnings percentile bin. This procedure results

in 29,224 strata for incumbent workers, and in doing so can match 98.7% of treated

incumbents (using 94.2% of control group incumbents).

After matching, our sample contains 1, 098, 924 incumbent workers in treatment and

control groups. Of those incumbent workers, 160, 419 are treated and 938, 505 are con-

trols. Our estimation sample of firms for identifying these treated and control group

workers contains 6, 179 unique firms, all of which experience an automation event at

some point over the period. As indicated in columns (3) and (4) of Table E.1, workers

employed at 2, 981 firms are treated, and workers employed at 4, 464 firms serve as con-

trols at least once. This entails that 1, 266 firms who serve as control events in one year,

66Appendix E.2 below provides further summary statistics of our worker data.
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Table E.1. Number of treatment and control events at the firm level by calendar year

Potential events: Events after matching:
Control Treatment Control Treatment

Year 2003 3,474 224 3,399 223
Year 2004 3,245 242 3,185 240
Year 2005 2,936 237 2,890 235
Year 2006 2,688 299 2,651 300
Year 2007 2,415 380 2,350 379
Year 2008 2,167 394 2,125 392
Year 2009 1,887 418 1,853 414
Year 2010 1,510 406 1,480 401
Year 2011 967 401 951 397
Total 21,289 3,004 20,884 2,981
Unique firms involved 4,512 3,004 4,464 2,981
Unique firms only used once 717 1,716 734 1,715

Notes: Table shows the number of potential treatment and control events, and
the number of events remaining after matching, for each calendar year.

also serve as treatment event in an earlier year.

E.2 Summary statistics for workers

Table E.2 provides summary statistics on our sample of incumbent workers across all

years. Column 1 shows descriptives before matching, and columns 2 and 3 show de-

scriptives for our matched sample of incumbent workers (both treated and control).

Note that we have 160, 419 + 938, 505 = 1, 098, 924 observations for incumbents: given

our observation window of 8 years (τ = −3 through τ = 4) this adds up to the

1, 098, 924× 8 = 8, 791, 392 incumbent worker observations used in our regressions. Note

that column 1 has more observations as this also includes the small fraction of workers

not used as a treated worker (because no match could be found for them) or not used as

a control group worker.
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Table E.2. Descriptives for incumbent workers
(1) (2) (3)

Full sample Treated workers Control workers
Annual wage income 40244.15 39708.60 39780.08

(27344.07) (26616.67) (26866.99)
Daily wage if employed 117.41 110.35 110.33

(75.09) (76.21) (75.98)
Annual non-employment duration (in days) 22.22 5.43 5.19

(81.06) (32.46) (31.82)
Hazard of leaving the firm 0.05 0.00 0.00

(0.21) (0.00) (0.00)
Total benefits 443.74 0.00 0.00

(2992.76) (0.00) (0.00)
Probability of entering early retirement 0.01 0.00 0.00

(0.11) (0.00) (0.00)
Probability of becoming self-employed 0.02 0.01 0.01

(0.13) (0.09) (0.11)
Share female 0.26 0.35 0.32

(0.44) (0.48) (0.47)
Foreign born or foreign-born parents 0.16 0.18 0.16

(0.36) (0.38) (0.37)
Age 42.11 40.24 40.11

(10.20) (9.99) (9.92)
Calendar year 2006.88 2006.14 2006.14

(3.36) (2.35) (2.35)
Manufacturing 0.36 0.20 0.20

(0.48) (0.40) (0.40)
Construction 0.11 0.07 0.07

(0.32) (0.25) (0.25)
Wholesale & retail trade 0.19 0.33 0.33

(0.40) (0.47) (0.47)
Transportation & storage 0.09 0.08 0.08

(0.28) (0.28) (0.28)
Accommodation & food serving 0.02 0.02 0.02

(0.13) (0.12) (0.12)
Information & communication 0.06 0.08 0.08

(0.23) (0.27) (0.27)
Prof’l, scientific, & technical activities 0.08 0.09 0.09

(0.27) (0.29) (0.29)
Administrative & support activities 0.09 0.13 0.13

(0.29) (0.33) (0.33)
0–19 employees 0.05 0.05 0.07

(0.22) (0.21) (0.26)
20–49 employees 0.14 0.13 0.17

(0.35) (0.34) (0.37)
50–99 employees 0.11 0.11 0.13

(0.32) (0.31) (0.34)
100–199 employees 0.12 0.11 0.13

(0.33) (0.32) (0.34)
200–499 employees 0.15 0.14 0.16

(0.36) (0.35) (0.36)
≥500 employees 0.43 0.46 0.34

(0.49) (0.50) (0.47)
Missing education 0.71 0.71 0.71

(0.45) (0.45) (0.45)
Low education 0.06 0.05 0.05

(0.23) (0.23) (0.22)
Middle education 0.12 0.12 0.12

(0.32) (0.32) (0.32)
High education 0.12 0.12 0.12

(0.32) (0.32) (0.33)
N 9,276,400 160,419 938,505

Notes: Column 1 shows unweighted means for all incumbent worker-year observations. Columns 2 and 3
show weighted means for the full regression sample at τ = −1, where weights are obtained from coarsened
exact matching as described in Appendix E.1. Standard deviations in parentheses.



E.3 Predicting automation event timing

To test whether the timing of automation events is random, one can try to predict the

timing of automation events based on observable characteristics of automating firms. In

particular, using Brier (1950) skill scores, we can test whether a predictive model with

observables performs better than a random prediction where we uniformly distribute

automation events across years where the automating firms are observed.

Specifically, Brier (1950) skill scores for the ten k-folded samples reported in Table E.3

are constructed as follows. We draw a 10 percent random sample without replacement

from the sample of 10,425 automating firms, and do this ten times: these are the test

samples. The remaining 90 percent of observations for each of these test samples consti-

tute the ten training samples. We then estimate a logit model with firm fixed effects and

time-varying observables (firm average log yearly and daily wages, log total wage bill, log

number of workers, log average worker age, log average worker tenure at the firm, share

female and a full set of interactions) for each training sample and predict the probability

of having a spike in a year for each corresponding test sample, assuming that each firm

will have exactly one spike. We also calculate the spike probability by year per firm from

random prediction, simply as one over the number of years the firm is observed. For the

model-based and random predictions in each of the ten test samples, we calculate the

Brier score, defined as the mean squared difference between the prediction and the actual

outcome. Lastly, we obtain the Brier skill score as 1 − Briermodel
Brierrandom

, reflecting the percent

prediction improvement of the model relative to random prediction. Table E.3 shows that

these improvements are low, ranging between 2.6 and 3.4%, suggesting that the timing of

automation events is essentially random with respect to firms’ observed characteristics.
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Table E.3. Brier skill scores for predicting automation event timing

Sample N Brier skill score
1 127,485 0.029
2 127,463 0.027
3 126,753 0.027
4 127,708 0.026
5 126,890 0.030
6 126,328 0.028
7 127,921 0.034
8 127,145 0.033
9 126,676 0.033
10 127,475 0.032

E.4 Effects on hourly wages

Figure E.1 shows effects on incumbents log hourly (rather than daily) wages and relative

hours worked, both of which which we observe only for 2006 onward. In line with the

impacts on daily wages we find no statistically significant impacts on hourly wages.

Figure E.1. Impact of automation on incumbents’ log hourly wages and hours worked
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Notes: N=2,042,874 for hourly wages and N=2,128,936 for hours worked.
Whiskers represent 95 percent confidence intervals.
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E.5 Effect heterogeneity

Here, we consider effect heterogeneity by incumbent characteristics. For succinctness, we

only show estimates for relative annual wage earnings, as this is the summary measure

capturing all other impacts. Any noteworthy differences in results for other worker-level

outcomes are described where relevant.

We consider how incumbent workers with different characteristics fare after an au-

tomation event. For each of the groups considered here, we contrast the effect against

the same group at the control firm by using an interaction term – this results in a de-

composition of the mean effects found in the main text. In particular, we estimate the

following model:

yijt = α+βDi+γpostτ + δ0× treati×postiτ +
∑
k

[δk × treati × postτ × zki]+λXijt+εijt,

(E.1)

where, as before, i indexes workers, j firms, t calendar time, and τ time relative to the

automation event. For succinctness, we estimate the average annual effect over the entire

post-treatment period rather than reporting the year-by-year coefficients. As such, postτ

is a dummy variable indicating the post-treatment period (i.e. τ ≥ 0). Further, zki is

a dimension of worker heterogeneity, such as gender, age, or sector, containing k + 1

categories– all time-varying characteristics are measured in the year before automation.

In addition to the controls included in equation (4), Xijt also contains zki as well as the

interaction terms zki × treati and zki × posti. In equation (E.1), δ0 gives the estimated

treatment effect for the reference group, and δk the deviation from that effect for category

k of worker characteristic zi. βDi capture worker fixed effects, and standard errors are

clustered at the treatment level as before.

Table E.4 summarizes how average post-treatment effects for annual wage income

differ across sectors, and for workers of different genders, with different contract types,

and in different age-specific wage quartiles. Results by firm size, worker age, and eduation

level are reported in the main text.

In column 1 of Table E.4, we consider to what extent the impacts of automation differ
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depending on which sector the worker’s firm belongs to: that is, our treatment effect is

interacted with workers’ sector of employment in τ = −1. For this model, Manufacturing

is the reference category. Note that sectoral differences may exist for various reasons.

First, automation technologies may be sector-specific, and differ in terms of how much

they displace labor. For example, it is possible that industrial or warehouse robots are

more labor-replacing than automated check-out systems. Second, the workers employed

in these different industries may have different characteristics (including unobservable

ones), making the impacts differ. Third, to the extent that skills are industry-specific,

sectoral labor market conditions matter: displacement would be more costly in sectors

with an excess supply of workers. While we cannot distinguish between these different ex-

planations, it is still important to consider whether our results are driven by displacement

effects in a subset of sectors, or whether the found impacts are pervasive. Our finding

here is that automation leads to wage income losses that are very pervasive across sectors:

this highlights that robotics is likely not the only automation technology displacing work-

ers from their jobs. The exception is Accommodation & food serving, where no income

losses (nor increases in firm separation) are detected. However, Accommodation & food

serving is also a sector with one of the lowest automation expenditures per worker, as

well as contributing only 2% of the sample of incumbent workers. On the other hand, in-

cumbent workers in Wholesale & retail and Manufacturing do experience earnings losses

– together, these two sectors employ over half of all incumbents in our sample (33% and

20%, respectively). We find that automation leads to increased firm separation rates for

all sectors except Accommodation & food serving and Construction. All in all, we find

that automation events originating in different sectors have qualitatively similar impacts

on workers.

Similarly, we do not find any statistically significant differences in impact by gender

(column 2). If anything, the coefficient suggests wage losses are larger for female workers,

which would be consistent with recent work from the displacement literature showing

that job loss leads to larger losses for women (Illing et al., 2021).

While we also do not find statistically significant differences by workers’ contract type
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(column 3), but the estimates suggest losses are larger for workers with flexible con-

tracts as opposed to open-ended contracts. This could reflect differences in employment

protection.

Unfortunately, our data do not contain any occupation information, and only limited

education information. For this reason, we obtain an alternative measure of workers’ skill

level by calculating each worker’s wage rank by age in τ = −1. We then group workers

into quartiles based on this rank. For example, the top-quartile workers in this measure

are those who earn in the top 25% of earnings across the sample for workers of their age

in the year before the automation event.

Results are reported in the fourth column of Table E.4: workers in the lowest age-

specific wage quartile are used as the reference category. We do not detect any statistically

significant differences: that is, workers across all wage quartiles experience displacement

from automation. However, the lowest-paid workers (i.e. those in the bottom two quar-

tiles) do experience the largest wage earnings losses, compared to those paid above the

median wage (the top two quartiles).

Differences in losses across the wage distribution may of course be partially driven by

differences in the firms where automation spikes occur: lower losses for one “skill” group

may be offset by higher exposure to automation events in our sample. While the estimates

in column (4) matter for the average worker’s exposure to displacement from automation,

we are also interested in which workers are displaced within firms. Therefore, the fifth

column in Table E.4 reports estimates by workers’ age-specific within-firm wage quartile.

That is, the bottom quartile reflects incumbents who are in the lowest 25 percent of their

firm’s wage distribution for their age.67 If anything, this reveals that the medium-paid

workers by age within firms appear to lose more wage income than do workers in the top

and bottom quartiles, although these differences are not statistically significant. Overall,

these results are consistent with our findings for education level reported in the main

67Note that these quartiles cannot be calculated for the smallest firms: however, all

previous findings are very similar in this subsample, suggesting that this is not driving

the results.
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Table E.4. Annual wage income effects by incumbents’ characteristics

(1) Sector (3) Contract type
Manufacturing (reference) -1.66** Open-ended contract (reference) -1.74***

(0.83) (0.44)
Deviations from reference group for: Deviation from reference group for:
Construction 0.25 Flexible contract -2.34

(1.52) (3.11)
Wholesale & retail trade -0.58

(1.13) (4) Overall age-specific wage quartile
Transportation & storage 1.41 Bottom quartile (reference) -2.10*

(1.52) (1.24)
Accommodation & food serving 2.89** Deviations from reference group for:

(1.43) Second quartile -0.06
Information & communication -1.05 (1.20)

(1.55) Third quartile 0.44
Prof’l, scientific, & technical activities -0.95 (1.24)

(1.53) Top quartile 0.14
Administrative & support activities -1.09

(2.46) (5) Within-firm age-specific wage quartile
Bottom quartile (reference) -1.38

(2) Gender (1.78)
Male (reference) -1.55*** Deviations from reference group for:

(0.56) Second quartile -0.86
Deviation from reference group for: (2.12)
Female -0.88 Third quartile -1.02

(0.73) (2.22)
Top quartile -0.26

(1.77)

Notes: Estimates from five separate models, N=8,791,392 for models (1) through (4); N=6,418,104
for model (5). All coefficients are average annual effects over the post-treatment period (τ = 0
through τ = 4): estimates have been multiplied by 100 to reflect percentages. *p<0.10, **p<0.05,
***p<0.01.

text. However, we should be careful about drawing strong conclusions from columns (4)

and (5) of Table E.4 since they may be capturing other factors than pure worker skill,

such as the quality of the worker-firm match.

Lastly, we study effect heterogeneity by restricting our data to the subset of incum-

bents working in automating firms that import automation technology. Table E.5 shows

that earnings declines are not found in this selected subsample. This is similar to our

findings for the largest firms, and highlights that effects for importers may reflect the fact

that these are large and high-productivity firms.
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Table E.5. Average annual impacts for incumbents in importing firms

Annual
wage
income

Firm
separation
hazard

Days in
non-

employment

Log daily
wage

Automation event impact -0.47 0.23 2.35 0.38
(1.33) (1.07) (2.01) (1.39)

N 1,418,320 1,339,577 1,418,320 1,374,858

Notes: Importing firms are those who import automation technology worth at
least 10,000 euros.

E.6 Incumbent workers versus recent hires

Our identification strategy for the impacts of automation is to consider individual workers

who have a pre-existing working relationship with the firm, as evidenced by at least three

years of firm tenure. Here we estimate our models for a second group of workers: those

with less than three years of firm tenure prior to the automation event. Compared to

incumbent workers, these workers are employed at a firm in τ = −1 but not in τ = −3

– we therefore refer to them as recent hires. This worker group is more likely to hold

temporary contracts, which could imply different treatment effects. However, causal

identification of the treatment effect for recent hires could prove more difficult as they

may have been hired in anticipation of the automation event. We therefore analyze them

separately, and put more stock in our results for incumbent workers.

We estimate equation (4) for recent hires in the same way we have for incumbents,

while additionally creating a zero income bin when matching on pre-event income.68 After

matching, our sample contains 314, 484 unique recent hires (63, 178 of whom are treated):

given our observation window of 8 years (τ = −3 through τ = 4) this results in 2, 515, 872

observations.

We find income losses from automation for recent hires that are only half the size

of those of incumbents, as shown in Figure E.2. Moreover, relative to recent hires in

the control group, point estimates are not significant – hence, recent hires do not have

different annual wage earnings as a result of automation. This could be the case because

68We obtain 30,679 strata for recent hires, and can match 96.1% of treated recent hires

(using 80.0% of control group recent hires).
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Figure E.2. Relative annual wage income effects for incumbents versus recent hires
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Notes: N=8,791,392 for incumbents and N=2,515,872 for recent hires.
Whiskers represent 95 percent confidence intervals.

recent hires have built up less firm-specific human capital, and therefore are more able to

adapt to new job tasks either within the same firm or when moving to a new employer.

However, it may also be the case that recent hires do not lose income because these workers

are in part hired in anticipation of the automation event – in this case their outcomes

are endogenous to the event. Consistent with new hires being better matched (or able

to adjust) to their firms’ new technologies, we find small positive (albeit statistically

insignificant) wage effects for this group, on the order of 1.0–1.4%.
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E.7 Robustness tests

E.7.1 Constructing placebo events

In this subsection we report descriptive statistics for our placebo analysis using spikes in

other material fixed assets. The results of this analysis are reported in section E.4b.

Table E.6 shows the distributions of automation costs and investments in other ma-

terial assets in the overlapping sample of firms, both in real euros and in real euros per

worker. Table E.7 shows the frequency of both types of spikes in this sample, where we

consider spikes in other material fixed assets placebo spikes. Lastly, Figure E.3 shows

the evolution of investments in material fixed assets around placebo spikes. Results for

worker impacts are shown in the main text.

Table E.6. Automation costs and other material asset investments distributions

Other material
Automation cost fixed assets
level per

worker
level per

worker
p5 0 0 0 0
p10 0 0 0 0
p25 0 0 0 0
p50 18,285 324 1,213 23
p75 75,758 1,043 34,277 456
p90 263,129 2,373 180,821 1,684
p95 620,724 3,839 473,242 3,344
mean 271,888 1,125 181,772 1,067
mean excl. zeros 377,964 1,564 349,980 2,054
N firms × years 171,875 171,875
N firms × years with 0 costs 48,237 82,607

Notes: All numbers are in 2015 euros.
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Table E.7. Automation and placebo events

Percentage of firms with event type:
Placebo (other

Nr of spikes Automation material fixed assets)
0 71.9 44.6
1 22.5 42.0
2 4.8 11.8
3 0.7 1.5
≥4 0.1 0.1

Notes: Overlapping sample of firms, N = 25,103.

Figure E.3. Placebo events: Spikes in other material fixed assets
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E.7.2 Robustness to other firm events and placebo events

Figure E.4. Robustness tests

(a) Robustness to other firm events
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(b) Comparison to placebo events
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E.7.3 Alternative definitions of automation events

Rather than using automation cost shares (i.e. automation costs in total costs), we

can construct automation events from sharp increases in automation outlays per worker.
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This is more in the spirit of a literature studying the impact of increasing the number of

robots per worker. Within this event definition, we then also vary the point(s) in time

where we measure employment – either for the years where we have data on total costs

(“AC/worker”); or for the full set of years (“AC/worker, full emp data”); or only for the

years pre-dating the candidate automation event (“AC/worker, pre-event emp data”).

All variations produce similar results to our baseline estimates, as seen in panel (a) of

Figure E.5.

Further, we show that results are robust to varying the spike threshold from two to

four times the average automation costs (our baseline is thrice the average automation

costs). Panel (b) in Figure E.5 reveals that estimated effect sizes are somewhat larger the

higher the threshold, as expected, but these differences are not statistically significant.

This highlights that our results are not driven by the specific spike size cut-off we employ

in our baseline estimates.
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Figure E.5. Robustness to different definitions of automation events

(a) Automation costs per worker
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(b) Changes in spike threshold for automation cost shares
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E.7.4 Changes in model specification

Here, we change our model specification in a number of ways. In particular, compared to

our baseline estimates, Figure E.6 shows results when additionally matching workers on

their firm tenure in years (that is, beyond the three years of firm tenure that all treated

and control group workers have); additionally matching workers on firm size; and when

removing individual fixed effects from the model (these are then replaced by dummies
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for worker gender and nationality, as well as fixed effects for firm size categories, and for

firm sector). Although estimates without individual fixed effects are a little less precise,

results are extremely robust to these changes in specification.

Figure E.6. Robustness to changes in model specification
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E.7.5 Randomization test

We subject our results to a randomization test as first introduced by Fisher (1935).69 To

do this, we take our sample of 35,580 firms, randomly draw firms with replacement, and

then for each of these firms randomly assign a year to have a placebo automation event.70

We then construct treated and control firms based on these placebo events. We repeat

this procedure 100 times, where each permutation sample contains the same number of

treated and control firms we have in our actual estimation sample.

Results are shown in Figure E.7: each gray line presents a set of placebo (dynamic)

treatment estimates, whereas the black line presents our actual treatment estimates. The

69Also see Kennedy (1995) for an overview and Young (2018) for a recent application and

evaluation of the value of these tests.
70Note that this permutates both the assignment of treatment to firms, and their timing

across years, since both are part of our empirical procedure.
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graph also shows probability values calculated using the rank of the absolute value of our

estimated coefficient among the 100 permutated estimates.71 This shows that something

at least as extreme as our treatment estimate is unlikely to occur by chance, increasing

confidence that our estimates are not a statistical false positive.

Figure E.7. Randomization test
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Notes: 100 permutations. The numbers printed at the bottom of the graph
are probability values for the treatment estimates, based on the randomiza-
tion test.

71Results are very similar when using t-statistics rather than coefficient estimates to

calculate probability values.
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F Computer investments

Table F.1 shows the distribution of automation costs and computer investment across

firms and years, highlighting automation costs are higher than computer investments.

Tables F.3 and F.4 compare automation and computer investments per worker across

firms by sector and firm size. As expected, Information and communication has the

highest computer investment per worker, followed by Professional, scientific & technical

activities. Accomodation & food serving and Construction have the lowest computer

investment per worker. When considering the relative importance of automation and

computer technology, Manufacturing is the most automation-intense compared to other

sectors, whereas Information & communication is the most computer-intense. Like for

automation, we generally see higher computer investment per worker for larger than

smaller firms, but the pattern is less dramatic.

Table F.2 shows the distribution of computer investment spikes: while more firms have

computer investment spikes than automation spikes, Figure F.1 shows that computer

investment spikes are also characterized by a large one-time increase in investment.
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Table F.1. Automation costs and computer investments distributions

Automation cost Computer investment
level per worker level per worker

p5 0 0 0 0
p10 0 0 0 0
p25 0 0 0 0
p50 18,285 324 6,046 108
p75 75,758 1,043 33,892 488
p90 263,129 2,373 123,000 1,229
p95 620,724 3,839 273,263 2,039
mean 271,884 1,125 109,390 615
mean excl. zeros 377,959 1,564 170,810 960
N firms × years 171,878 171,878
N firms × years with 0 costs 48,238 61,804

Notes: All numbers are in 2015 euros. The number of observations is the number of
firms times the number of years.

Table F.2. Automation and computerization events

Percentage of firms with event type:
Nr of spikes Automation Computerization
0 71.9 47.9
1 22.5 41.9
2 4.8 9.1
3 0.7 1.1
4 or 5 0.1 0.1

Notes: Overlapping sample of firms, N = 25,118.
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Table F.3. Automation costs and computer investments by sector

Autom. cost Comp. inv. Ratio autom. Nr of obs
Sector per worker per worker to comp. Firms Firms × yrs
Manufacturing 1,088 403 2.70 5,191 40,887
Construction 543 234 2.32 2,814 18,248
Wholesale & retail trade 1,257 594 2.12 7,230 50,471
Transportation & storage 999 496 2.01 2,283 15,868
Accommodation & food serving 279 165 1.69 742 4,462
Information & communication 2,214 2,713 0.82 1,563 9,762
Prof’l, scientific, & technical activities 1,381 844 1.64 2,376 14,830
Administrative & support activities 941 423 2.22 2,919 17,350

Notes: Overlapping sample, total number of firms is 25,118.

Table F.4. Automation costs and computer investments by firm size

Autom. cost Comp. inv. Ratio autom. Nr of obs
Firm size per worker per worker to comp. Firms Firms × yrs
1–19 employees 2,433 1,193 2.04 2,260 11,352
20–49 employees 928 593 1.56 10,459 66,448
50–99 employees 914 497 1.84 5,873 41,560
100–199 employees 1,029 572 1.80 3,430 26,529
200–499 employees 1,314 621 2.12 1,929 16,218
≥500 employees 1,794 695 2.58 1,167 9,771

Notes: Overlapping sample, total number of firms is 25,118.
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Figure F.1. Computer investment per worker around computerization events
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